518 research outputs found
Small area densitometry utilizing fiber optics
A transmission densitometer utilizing fiber optics for the efflux geometry was designed, constructed, and tested with several black and white films, and one color film. The system was semi-specularly illuminated and used semi-specular collection. The system demonstrates the feasibility of using fiber optic bundles in sensitometric equipment. Scattering properties of silver emulsions, color dye infra-red radiation transmission, and assorted electronic factors which introduce error in densitometric values are observed and discussed
Reducing the Attack Surface of Dynamic Binary Instrumentation Frameworks
Malicious applications pose as one of the most relevant issues in todayâs technology scenario, being considered the root of many Internet security threats. In part, this owes the ability of malware developers to promptly respond to the emergence of new security solutions by developing artifacts to detect and avoid them. In this work, we present three countermeasures to mitigate recent mechanisms used by malware to detect analysis environments. Among these techniques, this work focuses on those that enable a malware to detect dynamic binary instrumentation frameworks, thus increasing their attack surface. To ensure the effectiveness of the proposed countermeasures, proofs of concept were developed and tested in a controlled environment with a set of anti-instrumentation techniques. Finally, we evaluated the performance impact of using such countermeasures
Efficient Code Generation in a Region-based Dynamic Binary Translator
Region-based JIT compilation operates on translation units comprising multiple basic blocks and, possibly cyclic or conditional, control flow between these. It promises to reconcile aggressive code optimisation and low compilation latency in performance-critical dynamic binary translators. Whilst various region selection schemes and isolated code optimisation techniques have been investigated it remains unclear how to best exploit such regions for efficient code generation. Complex interactions with indirect branch tables and translation caches can have adverse effects on performance if not considered carefully. In this paper we present a complete code generation strategy for a region-based dynamic binary translator, which exploits branch type and control flow profiling information to improve code quality for the common case. We demonstrate that using our code generation strategy a competitive region-based dynamic compiler can be built on top of the LLVM JIT compilation framework. For the ARM-V5T target ISA and SPEC CPU 2006 benchmarks we achieve execution rates of, on average, 867 MIPS and up to 1323 MIPS on a standard X86 host machine, outperforming state-of-the-art QEMU-ARM by delivering a speedup of 264%
The Impact of a Sport-Based Service Learning Course on Participantsâ Attitudes, Intentions and Actions Toward Social Change
Framed in the context of a sport-based service learning program that engages in interdepartmental university partnerships (including athletics), the current study focused on addressing the need to analyze the long-term impacts of service learning on studentsâ intentions and actions toward social change. Service learning courses have been shown to facilitate positive outcomes such as increased cultural competency and future intentions toward civic engagement (Bruening et al., 2010, 2014). Building on this knowledge, the current study used in-depth interviews to investigate the social justice-related attitudes, intentions, and behaviors of alumni of a college service learning through sport course. Individual interviews (n = 22) with participants who had completed at least one semester in the course indicated that the course was influential in developing their ability to recognize social inequities. Furthermore, participants indicated future intentions and current involvement in initiatives that address social inequities in their given areas of life. Theoretical and managerial implications for effective academic and intercollegiate athletic partnerships, helping to increase impactful civic engagement and learning opportunities for student-athletes and non-student-athletes, are provided
Effects of Running on Femoral Articular Cartilage Thickness for Anterior Cruciate Ligament Reconstruction Patients and Non-ACLR Control Subjects
Anterior cruciate ligament reconstruction (ACLR) patients are more likely to develop posttraumatic knee osteoarthritis than non-ACLR counterparts. The effect of running on femoral articular cartilage thickness is unclear. PURPOSE: The purpose of this study was to compare how 30 minutes of running influences femoral articular cartilage thickness for ACLR patients and non-ACLR control subjects. We hypothesized that running would deform the femoral articular cartilage more for the ACLR patients than for the control subjects. METHODS: We recruited 20 individuals with primary unilateral ACLR and 20 matched non-ACLR controls. ACLR patients and control subjects were matched based upon age, gender, BMI, and weekly running mileage. The present procedures were approved by the appropriate institutional board and all subjects provided informed consent before data collection. We used ultrasound imaging to measure femoral articular cartilage thickness before and after 30 minutes of running. The ultrasound images were manually analyzed using ImageJ software by the same investigator. Total femoral articular cartilage cross-sectional area of each image was segmented into three regions: medial, lateral, and intercondylar. Deformation due to the run was compared between the ACLR patients and control subjects for each region using independent t tests (P \u3c 0.05, adjusted for multiple comparisons). RESULTS: The 30-minute run resulted in more deformation for the ACLR patients (0.03 ± 0.01 cm) than the matched controls (0.01 ± 0.01 cm) for the medial region (p \u3c 0.01) of the femoral articular cartilage. Identically, the 30-minute run resulted in more deformation for the ACLR patients (0.03 ± 0.01 cm) than the matched controls (0.01 ± 0.01 cm; p \u3c 0.01) for an average of the entire articular cartilage area (medial, lateral, and intercondylar). No significant differences existed between groups for the lateral or intercondylar regions. CONCLUSION: Thirty minutes of running deformed medial and overall femoral articular cartilage more for ACLR patients than non-ACLR control subjects
Running Biomechanics and Knee Cartilage Health in ACLR Patients
Anterior cruciate ligament reconstruction (ACLR) patients are more likely to subsequently suffer from knee osteoarthritis than non-ACLR counterparts. Exercise is thought to influence articular cartilage, however, it is unclear how running biomechanics are associated with femoral cartilage thickness and composition in ACLR patients. PURPOSE: The purpose of this study was to investigate relationships between running biomechanics and measures of femoral articular cartilage condition (thickness and composition) in ACLR patients and control subjects. METHODS: We used ultrasound and MRI (T2 mapping sequence) to measure articular cartilage thickness and composition, respectively, for 20 ACLR patients (age: 23 ± 3 yrs; mass: 70 ± 10 kg; time post-ACLR: 14.6 ± 6.1 months) and 20 matched controls (age: 22 ± 2 yrs; mass: 67 ± 11 kg). After these measures, all participants completed a 30-minute run on a force-instrumented treadmill. Correlational analyses were used to explore relationships between running biomechanics (vertical ground reaction force (vGRF)) and femoral cartilage thickness and composition (T2 relaxation time). The present procedures were approved by the appropriate institutional board and all subjects provided informed consent before data collection was performed. RESULTS: Significant positive correlations existed for the control subjects only between peak vGRF and overall (r = 0.34; p \u3c 0.01), medial (r = 0.23; p \u3c 0.01), lateral (r = 0.39; p = 0.02), and intercondylar (r = 0.31; p \u3c 0.01) femoral thickness. The ACLR patients showed significant negative correlations between T2 relaxation time for the central-medial region of the femoral condyle, and peak vGRF (r = â0.53; p = 0.01) and vertical impulse due to the vGRF (r = â0.46; p = 0.04). CONCLUSION: These findings offer some limited support for the idea that femoral articular cartilage benefits from increase vGRF during running. This is evidenced by the increased thickness for the control subjects and decreased T2 relaxation time (indicative of increased free-flowing water in the cartilage) for the ACLR patients, as running vGRF increased
Femoral Articular Cartilage Quality, but Not Thickness, Is Decreased for Anterior Cruciate Ligament Reconstruction Patients Relative to Control
Anterior cruciate ligament reconstruction (ACLR) patients are at risk of developing posttraumatic knee osteoarthritis (OA). The etiology of posttraumatic knee OA is complex, potentially involving biomechanical and biochemical factors. Changes in femoral cartilage thickness and composition are associated with knee OA, while current research is ambiguous on cartilage in ACLR patients. PURPOSE: This study aimed to compare femoral cartilage thickness and T2 relaxation time (a compositional measure) between ACLR patients and healthy controls in a resting state. We hypothesized that ACLR patients would exhibit thinner femoral cartilage and increased T2 relaxation times. METHODS: Twenty ACLR patients (6-24 months post-surgery) and 20 matched healthy controls were recruited following institutional board approval. Ultrasound and magnetic resonance imaging data were collected on two separate days, allowing cartilage thickness and composition measurements to be made, respectively. Statistical analyses, including independent t-tests and Holm-Bonferroni corrections, were performed on selected regions of interest. RESULTS: The ACLR group showed increased T2 relaxation times in four of eight femoral regions compared to controls. No significant differences in femoral cartilage thickness were observed between the groups. The primary finding from this study is that ACLR patients did not show differences in femoral cartilage thickness (a morphological measure), but displayed prolonged T2 relaxation times (a compositional measure) compared to controls, at rest. This finding suggests that compositional changes precede morphological shifts in femoral cartilage in early post-ACLR periods (6-24 months). CONCLUSION: These early compositional changes may indicate articular cartilage that is more compressible and subject to increased strain on the solid components of the joint. While ultrasound is a more accessible imaging method, magnetic resonance imaging may provide a more accurate and early evaluation of cartilage quality. Further research is needed to develop practical tools for early detection and monitoring of cartilage degradation in ACLR patients before progression into knee osteoarthritis
Prefetched Address Translation
With explosive growth in dataset sizes and increasing machine memory capacities, per-application memory footprints are commonly reaching into hundreds of GBs. Such huge datasets pressure the TLB, resulting in frequent misses that must be resolved through a page walk - a long-latency pointer chase through multiple levels of the in-memory radix tree-based page table.Anticipating further growth in dataset sizes and their adverse affect on TLB hit rates, this work seeks to accelerate page walks while fully preserving existing virtual memory abstractions and mechanisms - a must for software compatibility and generality. Our idea is to enable direct indexing into a given level of the page table, thus eliding the need to first fetch pointers from the preceding levels. A key contribution of our work is in showing that this can be done by simply ordering the pages containing the page table in physical memory to match the order of the virtual memory pages they map to. Doing so enables direct indexing into the page table using a base-plus-offset arithmetic.We introduce Address Translation with Prefetching (ASAP), a new approach for reducing the latency of address translation to a single access to the memory hierarchy. Upon a TLB miss, ASAP launches prefetches to the deeper levels of the page table, bypassing the preceding levels. These prefetches happen concurrently with a conventional page walk, which observes a latency reduction due to prefetching while guaranteeing that only correctly-predicted entries are consumed. ASAP requires minimal extensions to the OS and trivial microarchitectural support. Moreover, ASAP is fully legacy-preserving, requiring no modifications to the existing radix tree-based page table, TLBs and other software and hardware mechanisms for address translation. Our evaluation on a range of memory-intensive workloads shows that under SMT colocation, ASAP is able to reduce page walk latency by an average of 25% (42% max) in native execution, and 45% (55% max) under virtualization
- âŠ