14 research outputs found
Counting and effective rigidity in algebra and geometry
The purpose of this article is to produce effective versions of some rigidity
results in algebra and geometry. On the geometric side, we focus on the
spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic
hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum
determines the commensurability class of the 2-manifold (resp., 3-manifold). We
establish effective versions of these rigidity results by ensuring that, for
two incommensurable arithmetic manifolds of bounded volume, the length sets
(resp., the complex length sets) must disagree for a length that can be
explicitly bounded as a function of volume. We also prove an effective version
of a similar rigidity result established by the second author with Reid on a
surface analog of the length spectrum for hyperbolic 3-manifolds. These
effective results have corresponding algebraic analogs involving maximal
subfields and quaternion subalgebras of quaternion algebras. To prove these
effective rigidity results, we establish results on the asymptotic behavior of
certain algebraic and geometric counting functions which are of independent
interest.Comment: v.2, 39 pages. To appear in Invent. Mat