7 research outputs found

    Elliptic instability in the Lagrangian-averaged Euler-Boussinesq-alpha equations

    Full text link
    We examine the effects of turbulence on elliptic instability of rotating stratified incompressible flows, in the context of the Lagragian-averaged Euler-Boussinesq-alpha, or \laeba, model of turbulence. We find that the \laeba model alters the instability in a variety of ways for fixed Rossby number and Brunt-V\"ais\"al\"a frequency. First, it alters the location of the instability domains in the (γ,cosθ)(\gamma,\cos\theta)-parameter plane, where θ\theta is the angle of incidence the Kelvin wave makes with the axis of rotation and γ\gamma is the eccentricity of the elliptic flow, as well as the size of the associated Lyapunov exponent. Second, the model shrinks the width of one instability band while simultaneously increasing another. Third, the model introduces bands of unstable eccentric flows when the Kelvin wave is two-dimensional. We introduce two similarity variables--one is a ratio of the Brunt-V\"ais\"al\"a frequency to the model parameter Υ0=1+α2β2\Upsilon_0 = 1+\alpha^2\beta^2, and the other is the ratio of the adjusted inverse Rossby number to the same model parameter. Here, α\alpha is the turbulence correlation length, and β\beta is the Kelvin wave number. We show that by adjusting the Rossby number and Brunt-V\"ais\"al\"a frequency so that the similarity variables remain constant for a given value of Υ0\Upsilon_0, turbulence has little effect on elliptic instability for small eccentricities (γ1)(\gamma \ll 1). For moderate and large eccentricities, however, we see drastic changes of the unstable Arnold tongues due to the \laeba model.Comment: 23 pages (sigle spaced w/figure at the end), 9 figures--coarse quality, accepted by Phys. Fluid

    Multi-frequency CraikCriminale solutions of the NavierStokes equations

    No full text

    Euler-Poincare formulation and elliptic instability for nth-gradient fluids

    No full text
    The energy of an nthn^{th}-gradient fluid depends on its Eulerian velocity gradients of order nn. A variational principle is introduced for the dynamics of nthn^{th}-gradient fluids and their properties are reviewed in the context of Noether's theorem. The stability properties of Craik-Criminale solutions for first and second gradient fluids are examined.Comment: 17 pages, 5 figures (low quality), each in several part
    corecore