11 research outputs found

    Human Serum Albumin Adsorption on Hydrogel Contact Lenses In Vitro

    Get PDF
    Purpose. To improve the understanding of the formation of protein deposits on hydrogel lenses. Methods. A study of protein adsorption on three commercial hydrogel contact lenses of different materials, Etafilcon A (2-hydroxyethyl methacrylate [HEMA] polymer with sodium methacrylate and 2-ethyl-2-hydroxymediyl-l,3-propanediol trimethacrylate), tefilcon (poly [HEMA] cross-linked and copolymerized with ethylene glycol dimethacrylate), and vifilcon A (methacrylic acid polymer with ethylene glycol dimethacrylate, HEMA and N-vinyl pyrrolidone) was undertaken by using a single protein solution, human serum albumin (HSA), and a radiolabeltracer technique. Results. Static adsorption leading to multilayer adsorption was observed. Complete reversibility for adsorbed HSA on lenses did not exist. Some was tightly bound, whereas most was loosely bound and could be removed easily by rinsing in phosphate-buffered saline. Irreversible adsorption of HSA on the lenses was found to be time dependent and did not reach a maximum value even after 48 hours of adsorption. The amount of HSA adsorbed on the lenses-irreversibly as well as totally adsorbed protein-was in the order of vifilcon A > tefilcon > etafilcon A. Adsorption of HSA on the lenses increases with decreasing pH (range, 7.4 to 4) but always follows the above trend with respect to the different types of lenses. Conclusions. Irreversible binding of HSA on lenses is governed by the kinetics of protein denaturation. Electrostatic interactions may not play a major role in HSA adsorption on hydrogel lenses. Some other factors, such as hydrophobic dehydration, and special monomer units, such as iV-vinyl pyrrolidone in the lens materials, may favor adsorption of HSA. Inves

    Valproic Acid Promotes Early Neural Differentiation in Adult Mesenchymal Stem Cells Through Protein Signalling Pathways

    No full text
    Regenerative medicine is a rapidly expanding area in research and clinical applications. Therapies involving the use of small molecule chemicals aim to simplify the creation of specific drugs for clinical applications. Adult mesenchymal stem cells have recently shown the capacity to differentiate into several cell types applicable for regenerative medicine (specifically neural cells, using chemicals). Valproic acid was an ideal candidate due to its clinical stability. It has been implicated in the induction of neural differentiation; however, the mechanism and the downstream events were not known. In this study, we showed that using valproic acid on adult mesenchymal stem cells induced neural differentiation within 24 h by upregulating the expression of suppressor of cytokine signaling 5 (SOCS5) and Fibroblast growth factor 21 (FGF21), without increasing the potential death rate of the cells. Through this, the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway is downregulated, and the mitogen-activated protein kinase (MAPK) cascade is activated. The bioinformatics analyses revealed the expression of several neuro-specific proteins as well as a range of functional and structural proteins involved in the formation and development of the neural cells

    Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells

    No full text
    Stem cells are highly important in biology due to their unique innate ability to self-renew and differentiate into other specialised cells. In a neurological context, treating major injuries such as traumatic brain injury, spinal cord injury and stroke is a strong basis for research in this area. Mesenchymal stem cells (MSC) are a strong candidate because of their accessibility, compatibility if autologous, high yield and multipotency with a potential to generate neural cells. With the use of small-molecule chemicals, the neural induction of stem cells may occur within minutes or hours. Isobutylmethyl xanthine (IBMX) has been widely used in cocktails to induce neural differentiation. However, the key molecular mechanisms it instigates in the process are largely unknown. In this study we showed that IBMX-treated mesenchymal stem cells induced differentiation within 24 h with the unique expression of several key proteins such as Adapter protein crk, hypoxanthine-guanine phosphoribosyltransferase, DNA topoisomerase 2-beta and Cell division protein kinase 5 (CDK5), vital in linking signalling pathways. Furthermore, the increased expression of basic fibroblast growth factor in treated cells promotes phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) cascades and GTPase–Hras interactions. Bioinformatic and pathway analyses revealed upregulation in expression and an increase in the number of proteins with biological ontologies related to neural development and substructure formation. These findings enhance the understanding of the utility of IBMX in MSC neural differentiation and its involvement in neurite substructure development

    Molecular Dynamics of Cytokine Interactions and Signalling of Mesenchymal Stem Cells Undergoing Directed Neural-like Differentiation

    No full text
    Mesenchymal stem cells are a continually expanding area in research and clinical applications. Their usefulness and capacity to differentiate into various cells, particularly neural types, has driven the research area for several years. Neural differentiation has considerable usefulness. There are several successful differentiation techniques of mesenchymal stem cells that employ the use of small molecules, growth factors and commercially available kits and supplements. Phenotyping, molecular biology, genomics and proteomics investigation revealed a wealth of data about these cells during neurogenic differentiation. However, there remain large gaps in the knowledge base, particularly related to cytokines and how their role, drive mechanisms and the downstream signalling processes change with their varied expression throughout the differentiation process. In this study, adult mesenchymal stem cells were induced with neurogenic differentiation media, the cellular changes monitored by live-cell microscopy and the changes in cytokine expression in the intracellular region, secretion into the media and in the extracellular vesicle cargo were examined and analysed bioinformatically. Through this analysis, the up-regulation of key cytokines was revealed, and several neuroprotective and neurotrophic roles were displayed. Statistically significant molecules IFN-G, IL1B, IL6, TNF-A, have roles in astrocyte development. Furthermore, the cytokine bioinformatics suggests the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway is upregulated, supporting differentiation toward an astroglial lineage

    A Molecular Analysis of Cytokine Content across Extracellular Vesicles, Secretions, and Intracellular Space from Different Site-Specific Adipose-Derived Stem Cells

    No full text
    Cytokines are multifunctional small proteins that have a vital influence on inflammatory states of tissues and play a role in signalling and cellular control mechanisms. Cytokine expression has primarily been viewed as a form of direct secretion of molecules through an active transportation; however, other forms of active transport such as extracellular vesicles are at play. This is particularly important in stem cells where signalling molecules are key to communication managing the levels of proliferation, migration, and differentiation into mature cells. This study investigated cytokines from intracellular content, direct cellular secretions, and extracellular vesicles from adult adipose-derived stem cells isolated from three distinct anatomical locations: abdomen, thigh, and chin. The cells were cultured investigated using live cell microscopy, cytokine assays, and bioinformatics analysis. The cytokines quantified and examined from each sample type showed a distinct difference between niche areas and sample types. The varying levels of TNF-alpha, IL-6 and IL-8 cytokines were shown to play a crucial role in signalling pathways such as MAPK, ERK1/2 and JAK-STAT in cells. On the other hand, the chemotactic cytokines IL-1rn, Eotaxin, IP-10 and MCP-1 showed the most prominent changes across extracellular vesicles with roles in noncanonical signalling. By examining the local and tangential roles of cytokines in stem cells, their roles in signalling and in regenerative mechanisms may be further understood

    Selectively-Packaged Proteins in Breast Cancer Extracellular Vesicles Involved in Metastasis

    No full text
    Cancer-derived extracellular vesicles are known to play a role in the progression of the disease. In this rapidly-growing field, there are many reports of phenotypic changes in cells following exposure to cancer-derived extracellular vesicles. This study examines the protein contents of vesicles derived from three well-known breast cancer cell lines, MCF-7, MDA-MB-231 and T47D, using peptide-centric LC-MS/MS and cytokine multiplex immunoassay analysis to understand the molecular basis of these changes. Through these techniques a large number of proteins within these vesicles were identified. A large proportion of these proteins are known to be important in cancer formation and progression and associated with cancer signaling, angiogenesis, metastasis and invasion and immune regulation. This highlights the importance of extracellular vesicles (EVs) in cancer communications and shows some of the mechanisms the vesicles use to assist in cancer progression

    The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone growth

    No full text
    In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth
    corecore