5 research outputs found

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Study of microbial communities and environmental parameters of seawater collected from three Tunisian fishing harbors in Kerkennah Islands: Statistical analysis of the temporal and spatial dynamics

    Full text link
    Surface seawater, collected from three fishing harbors during different seasons of the years 2015, 2016 and 2017, were assessed for physico-chemical analyses. Results showed that seawater was mainly polluted by hydrocarbons and some heavy metals. Microbial communities' composition and abundance in the studied harbors were performed using molecular approaches. SSCP analysis indicated the presence of Bacteria, Archaea and Eucarya, with dominance of the bacterial domain. Illumina Miseq analysis revealed that the majority of the sequences were affiliated with Bacteria whereas Archaea were detected at low relative abundance. The bacterial community, dominated by Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes, Actinobacteria and Chloroflexi phyla, are known to be involved in a variety of biodegradation/biotransformation processes including hydrocarbons degradation and heavy metals resistance. The main objectives of this study are to assess, for the first time, the organic/inorganic pollution in surface seawater of Kerkennah Islands harbors, and to explore the potential of next generation marine microbiome monitoring to achieve the planning coastal managing strategies worldwide. 2022 Elsevier LtdThe present work was supported by the Tunisian Ministry of Higher Education and Scientific Research and the Hubert Curien Program ( CMCU 15G0808 ) supported by the French Ministry of Foreign Affairs .Scopu

    Reclaimed wastewater reuse in irrigation: role of biofilms in the fate of antibiotics and spread of antimicrobial resistance

    Full text link
    International audienceReclaimed wastewater associated biofilms are made up from diverse class of microbial communities that are continuously exposed to antibiotic residues. The presence of antibiotic resistance bacteria (ARB) and their associated antibiotic resistance genes (ARGs) ensures also a continuous selection pressure on biofilms that could be seen as hotspots for antibiotic resistance dissemination but can also play a role in antibiotic degradation. In this study, the antibiotic degradation and the abundance of four ARGs (qnrS, sul1, blaTEM, ermB), and two mobile genetic elements (MGEs) including IS613 and intl1, were followed in reclaimed wastewater and biofilm samples collected at the beginning and after 2 weeks of six antibiotics exposure (10 µg L−1). Antibiotics were partially degraded and remained above lowest minimum inhibitory concentration (MIC) for environmental samples described in the literature. The most abundant genes detected both in biofilms and reclaimed wastewater were sul1, ermB, and intl1. The relative abundance of these genes in biofilms increased during the 2 weeks of exposure but the highest values were found in control samples (without antibiotics pressure), suggesting that bacterial community composition and diversity are the driven forces for resistance selection and propagation in biofilms, rather than exposure to antibiotics. Planktonic and biofilm bacterial communities were characterized. Planktonic cells are classically defined “as free flowing bacteria in suspension” as opposed to the sessile state (the so-called biofilm): “a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living. surface” as stated by Costerton and co-workers (1999).The abundance of some genera known to harbor ARG such as Streptococcus, Exiguobacterium, Acholeplasma, Methylophylaceae and Porphyromonadaceae increased in reclaimed wastewater containing antibiotics. The presence of biofilm lowered the level of these genera in wastewater but, at the opposite, could also serve as a reservoir of these bacteria to re-colonize low-diversity wastewater. It seems that maintaining a high diversity is important to limit the dissemination of antimicrobial resistance among planktonic bacteria. Antibiotics had no influence on the biofilm development monitored with optical coherence tomography (OCT). Further research is needed in order to clarify the role of inter-species communication in biofilm on antibiotic degradation and resistance development and spreading
    corecore