562 research outputs found
Impact of COVID-19 and Future Emerging Viruses on Hematopoietic Cell Transplantation and Other Cellular Therapies
COVID-19, where Co stands for corona, VI stands for virus, and D denotes disease, in the recent past referred to as 2019 novel coronavirus or 2019-nCoV, has impacted numerous lives and businesses, and has led to a surreal emergency state within world communities. COVID-19 and the future emergence of dangerous viruses will have strong and as yet possibly unanticipated consequences and impact on the present and future use of cellular therapies. In this commentary, we offer a dispassionate assessment of where we believe COVID-19, as well as future emerging viruses, might compromise successful cell transplantation (Fig. 1). These therapies include hematopoietic cell transplantation (HCT) using umbilical cord blood (CB), bone marrow (BM), and mobilized peripheral blood, which contain hematopoietic stem (HSC) and progenitor (HPC) cells, as well as various cellular populations involved in the emerging fields of reparative and regenerative medicine. Such cell populations include HSC, HPC, mesenchymal stem/stromal cells (MSC), and immune cells such as lymphocytes used in chimeric antigen receptor (CAR) T-cell therapies, as well as pluripotent stem cell–based therapies
Applications of inertial navigation and modern control theory to the all weather landing problem
Inertial navigation and automatic landing control theory applied to instrument landing proble
Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation
Cord blood (CB) has been used as a viable source of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in over 35,000 clinical hematopoietic cell transplantation (HCT) efforts to treat the same variety of malignant and non-malignant disorders treated by bone marrow (BM) and mobilized peripheral blood (mPB) using HLA-matched or partially HLA-disparate related or unrelated donor cells for adult and children recipients. This review documents the beginning of this clinical effort that started in the 1980's, the pros and cons of CB HCT compared to BM and mPB HCT, and recent experimental and clinical efforts to enhance the efficacy of CB HCT. These efforts include means for increasing HSC numbers in single CB collections, expanding functional HSCs ex vivo, and improving CB HSC homing and engraftment, all with the goal of clinical translation. Concluding remarks highlight the need for phase I/II clinical trials to test the experimental procedures that are described, either alone or in combination
High-dose Sitagliptin for Systemic Inhibition of Dipeptidylpeptidase-4 to Enhance Engraftment of Single Cord Umbilical Cord Blood Transplantation
Delayed engraftment remains a limitation of umbilical cord blood (UCB) transplantation. We previously showed that inhibition of dipeptidylpeptidase (DPP)-4 using sitagliptin 600 mg daily was safe with encouraging results on engraftment, but inhibition was not sustained. We evaluated the efficacy and feasibility of higher doses of sitagliptin to enhance engraftment of UCB in patients with hematological cancers. Fifteen patients, median age 41 (range, 18-59) years, received single UCB grafts matched at 4 (n=11) or 5 (n=4) of 6 HLA loci with median nucleated cell dose of 3.5 (range, 2.57-4.57) x10(7)/kg. Sitagliptin 600 mg every 12 hours was administered days -1 to +2. All patients engrafted by day 30, with 12 (80%) engrafting by day 21. The median time to neutrophil engraftment was 19 (range, 12-30) days. Plasma DPP-4 activity was better inhibited with a mean residual trough DPP-4 activity of 70%+/-19%. Compared to patients previously treated with 600 mg/day, sitagliptin 600 mg every 12 hours appeared to improve engraftment, supporting the hypothesis that more sustained DPP-4 inhibition is required. In-vivo inhibition of DPP-4 using high-dose sitagliptin compares favorably with other approaches to enhance UCB engraftment with greater simplicity, and may show synergy in combination with other strategies
Potency analysis of cellular therapies: the emerging role of molecular assays
Potency testing is an important part of the evaluation of cellular therapy products. Potency assays are quantitative measures of a product-specific biological activity that is linked to a relevant biological property and, ideally, a product's in vivo mechanism of action. Both in vivo and in vitro assays can be used for potency testing. Since there is often a limited period of time between the completion of production and the release from the laboratory for administration to the patient, in vitro assays such are flow cytometry, ELISA, and cytotoxicity are typically used. Better potency assays are needed to assess the complex and multiple functions of cellular therapy products, some of which are not well understood. Gene expression profiling using microarray technology has been widely and effectively used to assess changes of cells in response to stimuli and to classify cancers. Preliminary studies have shown that the expression of noncoding microRNA which play an important role in cellular development, differentiation, metabolism and signal transduction can distinguish different types of stem cells and leukocytes. Both gene and microRNA expression profiling have the potential to be important tools for testing the potency of cellular therapies. Potency testing, the complexities associated with potency testing of cellular therapies, and the potential role of gene and microRNA expression microarrays in potency testing of cellular therapies is discussed
Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I
Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem
cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency
of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset
have improved outcome, suggesting to administer such therapy as early as possible. Given that
the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases
Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis
ISTH guidelines for antithrombotic treatment in COVID-19
Antithrombotic agents reduce risk of thromboembolism in severely ill patients. Patients with coronavirus disease 2019 (COVID-19) may realize additional benefits from heparins. Optimal dosing and timing of these treatments and benefits of other antithrombotic agents remain unclear. In October 2021, ISTH assembled an international panel of content experts, patient representatives, and a methodologist to develop recommendations on anticoagulants and antiplatelet agents for patients with COVID-19 in different clinical settings. We used the American College of Cardiology Foundation/American Heart Association methodology to assess level of evidence (LOE) and class of recommendation (COR). Only recommendations with LOE A or B were included. Panelists agreed on 12 recommendations: three for non-hospitalized, five for non-critically ill hospitalized, three for critically ill hospitalized, and one for post-discharge patients. Two recommendations were based on high-quality evidence, the remainder on moderate-quality evidence. Among non-critically ill patients hospitalized for COVID-19, the panel gave a strong recommendation (a) for use of prophylactic dose of low molecular weight heparin or unfractionated heparin (LMWH/UFH) (COR 1); (b) for select patients in this group, use of therapeutic dose LMWH/UFH in preference to prophylactic dose (COR 1); but (c) against the addition of an antiplatelet agent (COR 3). Weak recommendations favored (a) sulodexide in non-hospitalized patients, (b) adding an antiplatelet agent to prophylactic LMWH/UFH in select critically ill, and (c) prophylactic rivaroxaban for select patients after discharge (all COR 2b). Recommendations in this guideline are based on high-/moderate-quality evidence available through March 2022. Focused updates will incorporate future evidence supporting changes to these recommendations
- …