106 research outputs found

    Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.

    Get PDF
    Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation. The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions. A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene

    Surface effects in nucleation and growth of smectic B crystals in thin samples

    Full text link
    We present an experimental study of the surface effects (interactions with the container walls) during the nucleation and growth of smectic B crystals from the nematic in free growth and directional solidification of a mesogenic molecule (C4H9(C6H10)2CNC_4H_9-(C_6H_{10})_2CN) called CCH4 in thin (of thickness in the 10 μ\mum range) samples. We follow the dynamics of the system in real time with a polarizing microscope. The inner surfaces of the glass-plate samples are coated with polymeric films, either rubbed polyimid (PI) films or monooriented poly(tetrafluoroethylene) (PTFE) films deposited by friction at high temperature. The orientation of the nematic and the smectic B is planar. In PI-coated samples, the orientation effect of SmB crystals is mediated by the nematic, whereas, in PTFE-coated samples, it results from a homoepitaxy phenomenon occurring for two degenerate orientations. A recrystallization phenomenon partly destroys the initial distribution of crystal orientations. In directional solidification of polycrystals in PTFE-coated samples, a particular dynamics of faceted grain boundary grooves is at the origin of a dynamical mechanism of grain selection. Surface effects also are responsible for the nucleation of misoriented terraces on facets and the generation of lattice defects in the solid.Comment: 15 pages, 24 figures, submitted to PR

    Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds

    Get PDF
    In this paper, measurements of air pollutants made at a ground site near Fort McKay in the Athabasca oil sands region as part of a multi-platform campaign in the summer of 2013 are presented. The observations included measurements of selected volatile organic compounds (VOCs) by a gas chromatograph–ion trap mass spectrometer (GC-ITMS). This instrument observed a large, analytically unresolved hydrocarbon peak (with a retention index between 1100 and 1700) associated with intermediate-volatility organic compounds (IVOCs). However, the activities or processes that contribute to the release of these IVOCs in the oil sands region remain unclear. Principal component analysis (PCA) with varimax rotation was applied to elucidate major source types impacting the sampling site in the summer of 2013. The analysis included 28 variables, including concentrations of total odd nitrogen (NOy), carbon dioxide (CO2), methane (CH4), ammonia (NH3), carbon monoxide (CO), sulfur dioxide (SO2), total reduced-sulfur compounds (TRSs), speciated monoterpenes (including α- and β-pinene and limonene), particle volume calculated from measured size distributions of particles less than 10 and 1&thinsp;µm in diameter (PM10−1 and PM1), particle-surface-bound polycyclic aromatic hydrocarbons (pPAHs), and aerosol mass spectrometer composition measurements, including refractory black carbon (rBC) and organic aerosol components. The PCA was complemented by bivariate polar plots showing the joint wind speed and direction dependence of air pollutant concentrations to illustrate the spatial distribution of sources in the area. Using the 95&thinsp;% cumulative percentage of variance criterion, 10 components were identified and categorized by source type. These included emissions by wet tailing ponds, vegetation, open pit mining operations, upgrader facilities, and surface dust. Three components correlated with IVOCs, with the largest associated with surface mining and likely caused by the unearthing and processing of raw bitumen.</p
    corecore