206 research outputs found

    The advantages of sub-sampling and Inpainting for scanning transmission electron microscopy

    Get PDF
    Images and spectra obtained from aberration corrected scanning transmission electron microscopes (STEM) are now used routinely to quantify the morphology, structure, composition, chemistry, bonding, and optical/electronic properties of nanostructures, interfaces, and defects in many materials/biological systems. However, obtaining quantitative and reproducible atomic resolution observations from some experiments is actually harder with these ground-breaking instrumental capabilities, as the increase in beam current from using the correctors brings with it the potential for electron beam modification of the specimen during image acquisition. This beam effect is even more acute for in situ STEM observations, where the desired outcome being investigated is a result of a series of complicated transients, all of which can be modified in unknown ways by the electron beam. The aim in developing and applying new methods in STEM is, therefore, to focus on more efficient use of the dose that is supplied to the sample and to extract the most information from each image (or set of images). For STEM (and for that matter, all electron/ion/photon scanning systems), one way to achieve this is by sub-sampling the image and using Inpainting algorithms to reconstruct it. By separating final image quality from overall dose in this way and manipulating the dose distribution to be best for the stability of the sample, images can be acquired both faster and with less beam effects. In this paper, the methodology behind sub-sampling and Inpainting is described, and the potential for Inpainting to be applied to novel real time dynamic experiments will be discussed

    Why Some Interfaces Cannot be Sharp

    Full text link
    A central goal of modern materials physics and nanoscience is control of materials and their interfaces to atomic dimensions. For interfaces between polar and non-polar layers, this goal is thwarted by a polar catastrophe that forces an interfacial reconstruction. In traditional semiconductors this reconstruction is achieved by an atomic disordering and stoichiometry change at the interface, but in multivalent oxides a new option is available: if the electrons can move, the atoms don`t have to. Using atomic-scale electron energy loss spectroscopy we find that there is a fundamental asymmetry between ionically and electronically compensated interfaces, both in interfacial sharpness and carrier density. This suggests a general strategy to design sharp interfaces, remove interfacial screening charges, control the band offset, and hence dramatically improving the performance of oxide devices.Comment: 12 pages of text, 6 figure

    Social disorganization and history of child sexual abuse against girls in sub-Saharan Africa : a multilevel analysis

    Get PDF
    Background: Child sexual abuse (CSA) is a considerable public health problem. Less focus has been paid to the role of community level factors associated with CSA. The aim of this study was to examine the association between neighbourhood-level measures of social disorganization and CSA. Methods: We applied multiple multilevel logistic regression analysis on Demographic and Health Survey data for 6,351 adolescents from six countries in sub-Saharan Africa between 2006 and 2008. Results: The percentage of adolescents that had experienced CSA ranged from 1.04% to 5.84%. There was a significant variation in the odds of reporting CSA across the communities, suggesting 18% of the variation in CSA could be attributed to community level factors. Respondents currently employed were more likely to have reported CSA than those who were unemployed (odds ratio [OR] = 2.05, 95% confidence interval [CI] 1.48 to 2.83). Respondents from communities with a high family disruption rate were 57% more likely to have reported CSA (OR=1.57, 95% CI 1.14 to 2.16). Conclusion: We found that exposure to CSA was associated with high community level of family disruption, thus suggesting that neighbourhoods may indeed have significant important effects on exposure to CSA. Further studies are needed to explore pathways that connect the individual and neighbourhood levels, that is, means through which deleterious neighbourhood effects are transmitted to individuals

    Multi-Dimensional Characterization of Battery Materials

    Get PDF
    Demand for low carbon energy storage has highlighted the importance of imaging techniques for the characterization of electrode microstructures to determine key parameters associated with battery manufacture, operation, degradation, and failure both for next generation lithium and other novel battery systems. Here, recent progress and literature highlights from magnetic resonance, neutron, X-ray, focused ion beam, scanning and transmission electron microscopy are summarized. Two major trends are identified: First, the use of multi-modal microscopy in a correlative fashion, providing contrast modes spanning length- and time-scales, and second, the application of machine learning to guide data collection and analysis, recognizing the role of these tools in evaluating large data streams from increasingly sophisticated imaging experiments

    The Complex Role of Aluminium Contamination in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries

    Get PDF
    Abstract: A major challenge for lithium‐ion batteries based on nickel‐rich layered oxide cathodes is capacity fading. While chemo‐mechanical degradation and/or structural transformation are widely considered responsible for degradation, a comprehensive understanding of this process is still not complete. For the stable performance of these cathode materials, aluminium (Al) plays a crucial role, not only as a current collector but also as substitutional element for the transition metals in the cathodes and a protective oxide coating (as Al2O3). However, excess Al can be detrimental due to both its redox inactive nature in the cathode and the insulating nature of Al2O3. In this work, we report an analysis of the Al content in two different types of nickel‐rich manganese cobalt oxide cathode materials after battery cycling. Our results indicate a significant thickening of Al‐containing phases on the surface of the NMC811 electrode. Similar results are observed from commercial batteries (a mixture of NMC532 and LiMn2O4) that were analysed before use and at the end of life, where Al‐containing phases were found to increase significantly at surfaces and grain boundaries. Considering the detrimental effects of the excess Al in the nickel‐rich cathodes, our observation of increased Al content via battery cycling is believed to bring a new perspective to the ongoing discussions regarding the capacity fading phenomenon of nickel‐rich layered oxide materials as part of their complex degradation mechanisms

    Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM

    Get PDF
    An operando electrochemical stage for the transmission electron microscope has been configured to form a “Li battery” that is used to quantify the electrochemical processes that occur at the anode during charge/discharge cycling. Of particular importance for these observations is the identification of an image contrast reversal that originates from solid Li being less dense than the surrounding liquid electrolyte and electrode surface. This contrast allows Li to be identified from Li-containing compounds that make up the solid-electrolyte interphase (SEI) layer. By correlating images showing the sequence of Li electrodeposition and the evolution of the SEI layer with simultaneously acquired and calibrated cyclic voltammograms, electrodeposition, and electrolyte breakdown processes can be quantified directly on the nanoscale. This approach opens up intriguing new possibilities to rapidly visualize and test the electrochemical performance of a wide range of electrode/electrolyte combinations for next generation battery systems

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore