11 research outputs found

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    A Machine Learning Algorithm to Identify Patients at Risk of Unplanned Subsequent Surgery After Intramedullary Nailing for Tibial Shaft Fractures

    Full text link
    Objectives: In the SPRINT trial, 18% of patients with a tibial shaft fracture (TSF) treated with intramedullary nailing (IMN) had one or more unplanned subsequent surgical procedures. It is clinically relevant for surgeon and patient to anticipate unplanned secondary procedures, other than operations that can be readily expected such as reconstructive procedures for soft tissue defects. Therefore, the objective of this study was to develop a machine learning (ML) prediction model using the SPRINT data that can give individual patients and their care team an estimate of their particular probability of an unplanned second surgery. Methods: Patients from the SPRINT trial with unilateral TSFs were randomly divided into a training set (80%) and test set (20%). Five ML algorithms were trained in recognizing patterns associated with subsequent surgery in the training set based on a subset of variables identified by random forest algorithms. Performance of each ML algorithm was evaluated and compared based on (1) area under the ROC curve, (2) calibration slope and intercept, and (3) the Brier score. Results: Total data set comprised 1198 patients, of whom 214 patients (18%) underwent subsequent surgery. Seven variables were used to train ML algorithms: (1) Gustilo-Anderson classification, (2) Tscherne classification, (3) fracture location, (4) fracture gap, (5) polytrauma, (6) injury mechanism, and (7) OTA/AO classification. The best-performing ML algorithm had an area under the ROC curve, calibration slope, calibration intercept, and the Brier score of 0.766, 0.954, -0.002, and 0.120 in the training set and 0.773, 0.922, 0, and 0.119 in the test set, respectively. Conclusions: An ML algorithm was developed to predict the probability of subsequent surgery after IMN for TSFs. This ML algorithm may assist surgeons to inform patients about the probability of subsequent surgery and might help to identify patients who need a different perioperative plan or a more intensive approach.Orthopaedics, Trauma Surgery and Rehabilitatio

    Mechanism and Inhibition of Matrix Metalloproteinases

    Full text link
    corecore