122 research outputs found

    Avoidable mortality across Canada from 1975 to 1999

    Get PDF
    BACKGROUND: The concept of 'avoidable' mortality (AM) has been proposed as a performance measure of health care systems. In this study we examined mortality in five geographic regions of Canada from 1975 to 1999 for previously defined avoidable disease groups that are amenable to medical care and public health. These trends were compared to mortality from other causes. METHODS: National and regional age-standardized mortality rates for ages less than 65 years were estimated for avoidable and other causes of death for consecutive periods (1975–1979, 1980–1985, 1985–1989, 1990–1994, and 1995–1999). The proportion of all-cause mortality attributable to avoidable causes was also determined. RESULTS: From 1975–1979 to 1995–1999, the AM decrease (46.9%) was more pronounced compared to mortality from other causes (24.9%). There were persistent regional AM differences, with consistently lower AM in Ontario and British Columbia compared to the Atlantic, Quebec, and Prairies regions. This trend was not apparent when mortality from other causes was examined. Injuries, ischaemic heart disease, and lung cancer strongly influenced the overall AM trends. CONCLUSION: The regional differences in mortality for ages less than 65 years was attributable to causes of death amenable to medical care and public health, especially from causes responsive to public health

    The Role of Self-Efficacy in Achieving Health Behavior Change

    Full text link
    The concept of self-efficacy is receiving increasing recognition as a predictor of health behavior change and maintenance. The purpose of this article is to facilitate a clearer understanding of both the concept and its relevance for health education research and practice. Self-efficacy is first defined and distinguished from other related concepts. Next, studies of the self-efficacy concept as it relates to health practices are examined. This review focuses on cigarette smoking, weight control, contraception, alcohol abuse and exercise behaviors. The studies reviewed suggest strong relationships between self-efficacy and health behavior change and maintenance. Experimental manipulations of self-efficacy suggest that efficacy can be enhanced and that this enhancement is related to subsequent health behavior change. The findings from these studies also suggest methods for modifying health practices. These methods diverge from many of the current, traditional methods for changing health practices. Recommendations for incorporating the enhancement of self-efficacy into health behavior change programs are made in light of the reviewed findings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68171/2/10.1177_109019818601300108.pd

    Program for expectant and new mothers: a population-based study of participation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Manitoba Healthy Baby Program is aimed at promoting pre- and perinatal health and includes two components: 1) prenatal income supplement; 2) community support programs. The goal of this research was to determine the uptake of these components by target groups.</p> <p>Methods</p> <p>Data on participation in each of the two program components were linked to data on all hospital births in Manitoba between 2004/05 through 2007/08. Descriptive analyses of participation by maternal characteristics were produced. Logistic regression analyses were conducted to identify factors associated with participation in the two programs. Separate regressions were run for two groups of women giving birth during the study period: 1) total population; 2) those receiving provincial income assistance during the prenatal period.</p> <p>Results</p> <p>Almost 30% of women giving birth in Manitoba received the Healthy Baby prenatal income supplement, whereas only 12.6% participated in any community support programs. Over one quarter (26.4%) of pregnant women on income assistance did not apply for and receive the prenatal income supplement, despite all being eligible for it. Furthermore, 77.8% of women on income assistance did not participate in community support programs. Factors associated with both receipt of the prenatal benefit and participation in community support programs included lower SES, receipt of income assistance, obtaining adequate prenatal care, having completed high school and having depressive symptoms. Having more previous births was associated with higher odds of receiving the prenatal benefit, but lower odds of attending community support programs. Being married was associated with lower odds of receiving the prenatal benefit but higher odds of participating in community support programs.</p> <p>Conclusions</p> <p>Although uptake of the Healthy Baby program in Manitoba is greater for women in groups at risk for poorer perinatal outcomes, a substantial number of women eligible for this program are not receiving it; efforts to reach these women should be enhanced.</p

    Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons

    Get PDF
    Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express “high threshold” Kv3-family channels that are required for firing at high rates (>∼200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1–50 neurons, stimulated at rates between 100–1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Contributions of animal models to the study of mood disorders

    Full text link
    corecore