188 research outputs found

    Note on paramoudra-like carbonate concretions in the Urenui Formation, North Taranaki: possible plumbing system for a Late Miocene methane seep field

    Get PDF
    A reconnaissance study of calcitic and dolomitic tubular concretions in upper slope mudstone of the Late Miocene Urenui Formation exposed along the north Taranaki coastline indicates that they have a complex diagenetic history involving different phases of carbonate cementation and likely hydrofracturing associated with build up of fluid/gas pressures. The concretions resemble classical paramoudra in the European chalk, but are not siliceous and do not have a trace fossil origin. Stable oxygen and carbon isotope data suggest that the micritic carbonate cements in the Urenui paramoudra were probably sourced primarily from ascending methane fluid/gases, and that they precipitated entirely within the host mudstone below the seafloor. We suggest the paramoudra may mark the subsurface plumbing networks of a Late Miocene cold seep system, in which case they have relevance to the evolution and migration of hydrocarbons in Taranaki Basin, at this site perhaps focussed along the Taranaki Fault. The presence of dislodged and mass-emplaced paramoudra in the axial conglomerate of channels within the Urenui mudstone suggests there could be a connection between the loci of seep field development and slope failure and canyon cutting on the Late Miocene Taranaki margin

    Tubular carbonate concretions as hydrocarbon migration pathways? Examples from North Island, New Zealand

    Get PDF
    Cold seep carbonate deposits are associated with the development on the sea floor of distinctive chemosyn¬thetic animal communities and carbonate minerali¬sation as a consequence of microbially mediated anaerobic oxidation of methane. Several possible sources of the methane exist, identifiable from the carbon isotope values of the carbonate precipitates. In the modern, seep carbonates can occur on the sea floor above petroleum reservoirs where an important origin can be from ascending thermogenic hydrocar¬bons. The character of geological structures marking the ascent pathways from deep in the subsurface to shallow subsurface levels are poorly understood, but one such structure resulting from focused fluid flow may be tubular carbonate concretions. Several mudrock-dominated Cenozoic (especially Miocene) sedimentary formations in the North Island of New Zealand include carbonate concretions having a wide range of tubular morphologies. The concretions are typically oriented at high angles to bedding, and often have a central conduit that is either empty or filled with late stage cements. Stable isotope analyses (δ13C, δ18O) suggest that the carbonate cements in the concretions precipitated mainly from ascending methane, likely sourced from a mixture of deep thermogenic and shallow biogenic sources. A clear link between the tubular concretions and overlying paleo-sea floor seep-carbonate deposits exists at some sites. We suggest that the tubular carbonate concretions mark the subsurface plumbing network of cold seep systems. When exposed and accessible in outcrop, they afford an opportunity to investigate the geochemical evolution of cold seeps, and possibly also the nature of linkages between subsurface and surface portions of such a system. Seep field development has implications for the characterisation of fluid flow in sedimentary basins, for the global carbon cycle, for exerting a biogeochemical influence on the development of marine communities, and for the evaluation of future hydrocarbon resources, recovery, and drilling and production hazards. These matters remain to be fully assessed within a petroleum systems framework for New Zealand’s Cenozoic sedimentary basins

    An integrated sequence stratigraphic, palaeoenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes

    Get PDF
    Sediments of the mid-Pliocene (c. 3.4–3.0 Ma) Tangahoe Formation exposed in cliffs along the South Taranaki coastline of New Zealand comprise a 270 m thick, cyclothemic shallow-marine succession that has been gently warped into a north to south trending, low angle anticline. This study examines the sedimentologic, faunal, and petrographic characteristics of 10 Milankovitch-scale (6th order), shallow-marine depositional sequences exposed on the western limb of the anticline. The sequences are recognised on the basis of the cyclic vertical stacking of their constituent lithofacies, which are bound by sharp wave cut surfaces produced during transgressive shoreface erosion. Each sequence comprises three parts: (1) a 0.2–2 m thick, deepening upwards, basal suite of reworked bioclastic lag deposits (onlap shellbed) and/or an overlying matrix supported, molluscan shellbed of offshore shelf affinity (backlap shellbed); (2) a 5–20 m thick, gradually shoaling, aggradational siltstone succession; and (3) a 5–10 m thick, strongly progradational, well sorted “forced regressive” shoreline sandstone. The three-fold subdivision corresponds to transgressive, highstand, and regressive systems tracts (TSTs, HSTs, and RSTs) respectively, and represents deposition during a glacio-eustatic sea-level cycle. Lowstand systems tract sediments are not recorded because the outcrop is situated c. 100 km east of the contemporary shelf edge and was subaerially exposed at that time. Well developed, sharp- and gradational-based forced regressive sandstones contain a variety of storm-emplaced sedimentary structures, and represent the rapid and abrupt basinward translation of the shoreline on to a storm dominated, shallow shelf during eustatic sea-level fall. Increased supply of sediment from north-west South Island during “forced regression” is indicated from petrographic analyses of the heavy mineralogy of the sandstones. A chronology based on biostratigraphy and the correlation of a new magnetostratigraphy to the magnetic polarity timescale allows: (1) identification of the Mammoth (C2An.2r) and Kaena (C2An.1r) subchrons; (2) correlation of the coastal section to the Waipipian Stage; and (3) estimation of the age of the coastal section as 3.36–3.06 Ma. Qualitative assessment of foraminiferal census data and molluscan palaeoecology reveals cyclic changes in water depth from shelf to shoreline environments during the deposition of each sequence. Seven major cycles in water depth of between 20 and 50m have been correlated to individual 40 ka glacio-eustatic sea-level cycles on the marine oxygen isotope timescale. The coastal Tangahoe Formation provides a shallow-marine record of global glacio-eustasy prior to the development of significant ice sheets on Northern Hemisphere continents, and supports evidence from marine δ18O archives that changes in Antarctic ice volume were occurring during the Pliocene

    New isomers in 125 Pd 79 and 127 Pd 81 : Competing proton and neutron excitations in neutron-rich palladium nuclides towards the N=82 shell closure

    Get PDF
    The neutron-rich isotopes of palladium have attracted considerable interest in terms of the evolution of the neutron shell closure and its influence on the r-process nucleosynthesis. In this Letter, we present the first spectroscopic information on the excited states in 125Pd79 and 127Pd81 studied using the EURICA γ-ray spectrometer, following production via in-flight fission of a high-intensity 238U beam at the RIBF facility. New isomeric states with half-lives of 144(4) ns and 39(6) μs have been assigned spins and parities of () and () in 125Pd and 127Pd, respectively. The observed level properties are compared to a shell-model calculation, suggesting the competition between proton excitations and neutron excitations in the proton-hole and neutron-hole systems in the vicinity of the doubly magic nucleus 132Sn.Part of the WAS3ABi was supported by the Rare Isotope Science Project which is funded by MSIP and NRF of Korea. This work was supported by the Priority Centers Research Program in Korea (2009-0093817), OTKA contract number K100835, the U.S. DOE, Office of Nuclear Physics (Contract No. DE-AC02-06CH11357), NRF-2016R1A5A1013277 and NRF-2013M7A1A1075764, the Spanish Ministerio de Economía y Competitividad under contract FPA2017-84756-C4-2-P, the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF (Contract No. 300096), German BMBF under Contract No: 05P12PKFNE, JSPS KAKENHI Grant No. 24740188 and 25247045, the National Natural Science Foundation of China (Nos. 11505302, 11575112), the National Key Program for S&T Research and Development (No. 2016YFA0400501), and STFC (UK)

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Bipartite Entanglement in Continuous-Variable Cluster States

    Full text link
    We present a study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous-variable quantum computing. A central aim is to compare mathematically-idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations which are experimentally accessible. Adopting widely-used definitions, we first review the key concepts, by analysing a process of teleportation along a continuous-variable quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest M et al., Phys. Rev. Lett. 97 150504 (2006), adapting their definition to the continuous-variable context. Finally we add the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of continuous-variable analogues of measurement-based quantum computation.Comment: 22 page

    Shape evolution in 116,118 Ru: Triaxiality and transition between the O(6) and U(5) dynamical symmetries

    Get PDF
    116Ru and 118Ru have been studied via β-delayed γ-ray spectroscopy of nuclei produced in fragmentation reactions at the Radioactive Ion-Beam Factory (RIBF) facility. Level schemes with positive-parity states up to spin J=6 have been constructed. The re

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al
    corecore