120,531 research outputs found
Recommendations for NASA research and development in artificial intelligence
Basic artificial intelligence (AI) research, AI applications, engineering, institutional management, and previously impractical missions enabled by AI are discussed
Revised Results for Non-thermal Recombination Flare Hard X-Ray Emission
Brown and Mallik (BM) recently showed that, for hot sources, recombination of
non-thermal electrons (NTR) onto highly ionised heavy ions is not negligible
compared to non-thermal bremsstrahlung (NTB) as a source of flare hard X-rays
(HXRs) and so should be included in modelling non-thermal HXR flare emission.
In view of major discrepancies between BM results for the THERMAL continua and
those of the Chianti code and of RHESSI solar data, we critically re-examine
and correct the BM analysis and modify the conclusions concerning the
importance of NTR. Although the analytic Kramers expression used by BM is
correct for the purely hydrogenic recombination cross section, the heuristic
expressions used by BM to extend the Kramers expression beyond the `bare
nucleus' case to which it applies had serious errors. BM results have therefore
been recalculated using corrected expressions, which have been validated
against the results of detailed calculations. At T ~ 10-30 MK the dominant ions
are Fe 22+, 23+, 24+ for which BM erroneously overestimated NTR emission by
around an order of magnitude. Contrary to the BM claim, NTR in hot flare
plasmas does NOT dominate over NTB, although in some cases it can be comparable
and so still very important in inversions of photon spectra to derive electron
spectra, especially as NTR includes sharp edge features. The BM claim of
dominance of NTR over NTB in deka-keV emission is incorrect due to a serious
error in their analysis. However, the NTR contribution can still be large
enough to demand inclusion in spectral fitting, the spectral edges having
potentially serious effects on inversion of HXR spectra to infer fast electron
spectra.Comment: 6 pages, 8 figures, 1 tabl
Natural age dispersion arising from the analysis of broken crystals, part I. Theoretical basis and implications for the apatite (U-Th)/He thermochronometer
Over the last decade major progress has been made in developing both the theoretical and practical aspects of apatite (U-Th)/He thermochronometry and it is now standard practice, and generally seen as best practice, to analyse single grain aliquots. These individual prismatic crystals are often broken and are fragments of larger crystals that have broken during mineral separation along the weak basal cleavage in apatite. This is clearly indicated by the common occurrence of only 1 or no clear crystal terminations present on separated apatite grains, and evidence of freshly broken ends when grains are viewed using a scanning electron microscope. This matters because if the 4He distribution within the whole grain is not homogeneous, because of partial loss due to thermal diffusion for example, then the fragments will all yield ages different from each other and from the whole grain age. Here we use a numerical model with a finite cylinder geometry to approximate 4He ingrowth and thermal diffusion within hexagonal prismatic apatite crystals. This is used to quantify the amount and patterns of inherent, natural age dispersion that arises from analysing broken crystals. A series of systematic numerical experiments were conducted to explore and quantify the pattern and behaviour of this source of dispersion using a set of 5 simple thermal histories that represent a range of plausible geological scenarios. In addition some more complex numerical experiments were run to investigate the pattern and behaviour of grain dispersion seen in several real data sets. The results indicate that natural dispersion of a set of single fragment ages (defined as the range divided by the mean) arising from fragmentation alone varies from c. 7% even for rapid (c. 10 ∘C/Ma), monotonic cooling to over 50% for protracted, complex histories that cause significant diffusional loss of 4He. The magnitude of dispersion arising from fragmentation scales with the grain cylindrical radius, and is of a similar magnitude to dispersion expected from differences in absolute grain size alone (spherical equivalent radii of 40 to 150 μm). This source of dispersion is significant compared with typical analytical uncertainties on individual grain analyses (c. 6%) and standard deviations on multiple grain analyses from a single sample (c. 10-20%). Where there is a significant difference in the U and Th concentration of individual grains (eU), the effect of radiation damage accumulation on 4He diffusivity (assessed using the RDAAM model of Flowers et al. (2009)) is the primary cause of dispersion for samples that have experienced a protracted thermal history, and can cause dispersion in excess of 100% for realistic ranges of eU conentration (i.e. 5-100 ppm). Expected natural dispersion arising from the combined effects of reasonable variations in grain size (radii 40-125 μm), eU concentration (5-150 ppm) and fragmentation would typically exceed 100% for complex thermal histories. In addition to adding a significant component of natural dispersion to analyses, the effect of fragmentation also acts to decouple and corrupt expected correlations between grain ages and absolute grain size and to a lesser extent between grain age and effective uranium concentration (eU). Considering fragmentation explicitly as a source of dispersion and analysing how the different sources of natural dispersion all interact with each other provides a quantitative framework for understanding patterns of dispersion that otherwise appear chaotic. An important outcome of these numerical experiments is that they demonstrate that the pattern of age dispersion arising from fragmentation mimics the pattern of 4He distribution within the whole grains, thus providing an important source of information about the thermal history of the sample. We suggest that if the primary focus of a study is to extract the thermal history information from (U-Th)/He analyses then sampling and analytical strategies should aim to maximise the natural dispersion of grain ages, not minimise it, and should aim to analyse circa 20-30 grains from each sample. The key observations and conclusions drawn here are directly applicable to other thermochronometers, such as the apatite, rutile and titanite U-Pb systems, where the diffusion domain is approximated by the physical grain size
ANOPP programmer's reference manual for the executive System
Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers
Smart Materials as Intelligent Insulation
In order to provide a robust infrastructure for the transmission and distribution of electrical power, understanding and monitoring equipment ageing and failure is of paramount importance. Commonly, failure is associated with degradation of the dielectric material; therefore the introduction of a smart moiety into the material is a potentially attractive means of continual condition monitoring. It is important that any introduction of smart groups into the dielectric does not have any detrimental effect on the desirable electrical and mechanical properties of the bulk material. Initial work focussed on the introduction of fluorophores into a model dielectric system. Fluorescence is known to be a visible effect even at very low concentrations of active fluorophores and therefore was thought well suited to such an application. It was necessary both to optimise the active fluorophore itself and to determine the most appropriate manner in which to introduce the fluorophores into the insulating system. This presentation will describe the effect of introducing fluorophores into polymeric systems on the dielectric properties of the material and the findings thus far [1]. Alternative smart material systems will also be discussed along with the benefits and limitations of smart materials as electric field sensors
Regularized energy-dependent solar flare hard x-ray spectral index
The deduction from solar flare X-ray photon spectroscopic data of the energy
dependent model-independent spectral index is considered as an inverse problem.
Using the well developed regularization approach we analyze the energy
dependency of spectral index for a high resolution energy spectrum provided by
Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization
technique produces much smoother derivatives while avoiding additional errors
typical of finite differences. It is shown that observations imply a spectral
index varying significantly with energy, in a way that also varies with time as
the flare progresses. The implications of these findings are discussed in the
solar flare context.Comment: 13 pages; 5 figures, Solar Physics in pres
Non-locality in the nucleon-nucleon interaction and nuclear matter saturation
We study the possible relationship between the saturation properties of
nuclear matter and the inclusion of non-locality in the nucleon-nucleon
interaction. To this purpose we compute the saturation curve of nuclear matter
within the Bethe-Brueckner-Goldstone theory using a recently proposed realistic
non-local potential, and compare it with the corresponding curves obtained with
a purely local realistic interaction (Argonne v) and the most recent
version of the one-boson exchange potential (CD Bonn). We find that the
inclusion of non-locality in the two-nucleon bare interaction strongly affects
saturation, but it is unable to provide a consistent description of few-body
nuclear systems and nuclear matter.Comment: 9 pages, 8 figures; v2: introduction extended, references added,
discussion of fig.8 reformulated; to be published in Phys. Rev.
Covariant Poisson equation with compact Lie algebras
The covariant Poisson equation for Lie algebra-valued mappings defined in
3-dimensional Euclidean space is studied using functional analytic methods.
Weighted covariant Sobolev spaces are defined and used to derive sufficient
conditions for the existence and smoothness of solutions to the covariant
Poisson equation. These conditions require, apart from suitable continuity,
appropriate local integrability of the gauge potentials and global weighted
integrability of the curvature form and the source. The possibility of
nontrivial asymptotic behaviour of a solution is also considered. As a
by-product, weighted covariant generalisations of Sobolev embeddings are
established.Comment: 31 pages, LaTeX2
Transformer Oil Passivation and Impact of Corrosive Sulphur
In recent years a significant volume of research has been undertaken in order to understand the recent failures in oil insulated power apparatus due to deposition of copper sulphide on the conductors and in the insulation paper. Dibenzyl Disulfide (DBDS) has been found to be the leading corrosive sulphur compound in the insulation oil [1]. The process of copper sulphide formation and the deposition in the paper is still being investigated, but a recently proposed method seems to be gaining some confidence [1]. This method suggests a two-step process; initially the DBDS and some oil soluble copper complexes are formed. Secondly the copper complexes are absorbed in the paper insulation, where they then decompose into copper sulphide [2]. The most commonly used mitigating technique for corrosive sulphur contaminated oil is passivation, normally using Irgamet 39 or 1, 2, 3-benzotriazole (BTA). The passivator is diluted into the oil to a concentration of around 100ppm, where it then reacts with the copper conductors to form a complex layer around the copper, preventing it from interacting with DBDS compounds and forming copper sulphide. This research project will investigate the electrical properties of HV transformers which have tested positive for corrosive sulphur, and the evolution of those properties as the asset degrades due to sulphur corrosion. Parallel to this the long term properties of transformers with passivated insulation oil will be analysed in order to understand the passivator stability and whether it is necessary to keep adding the passivator to sustain its performance. Condition monitoring techniques under investigation will include dielectric spectroscopy, frequency response analysis, recovery voltage method (aka interfacial polarisation) amongst others. Partial discharge techniques will not be investigated, as the voltage between the coil plates is low and therefore it will not contribute significantly to the overall insulation breakdown, in corrosive oil related faults [3]. The goal of this research is to establish key electrical properties in both passivated and non-passivated power transformers that demonstrate detectable changes as the equipment degrades due to the insulation oil being corrosive
1995 atmospheric trace molecule spectroscopy (ATMOS) linelist
The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment uses a Fourier-transform spectrometer on board the Space Shuttle to record infrared solar occultation spectra of the atmosphere at 0.01-cm^(-1) resolution. The current version of the molecular spectroscopic database used for the analysis of the data obtained during three Space Shuttle missions between 1992 and 1994 is described. It is an extension of the effort first described by Brown et al. [Appl. Opt. 26, 5154 (1987)] to maintain an up-to-date database for the ATMOS experiment. The three-part ATMOS compilation contains Line parameters of 49 molecular species between 0 and 10000 cm^(-1), The main list, with nearly 700,000 entries, is an updated version of the HITRAN 1992 database. The second compilation contains supplemental line parameters, and the third set consists of absorption cross sections to represent the unresolvable features of heavy molecules. The differences between the ATMOS database and other public compilations are discussed
- …