14,432 research outputs found

    SOUSA's Swift Supernova Siblings

    Full text link
    Swift has observed over three hundred supernovae in its first ten years. Photometry from the Ultra-Violet Optical Telescope (UVOT) is being compiled in the Swift Optical/Ultraviolet Supernovae Archive (SOUSA). The diversity of supernovae leads to a wide dynamic range of intrinsic properties. The intrinsic UV brightness of supernovae as a function of type and epoch allows one to understand the distance ranges at which Swift can reliably detect supernovae. The large Swift sample also includes supernovae from the same galaxy as other Swift supernovae. Through the first ten years, these families include 34 supernovae from 16 host galaxies (two galaxies have each hosted three Swift supernovae).Comment: Submitted to Proceedings of Science for the "10 Years of Swift" Meeting held in Rome in December 201

    The Ultraviolet Brightest Type Ia Supernova 2011de

    Get PDF
    We present and discuss the UV/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed--more than a factor of ten brighter than normal SNe Ia in the mid-ultraviolet. This object is an extreme example of the differences seen in the ultraviolet for objects which do not appear remarkable in the optical. We find that the UV/optical brightness and broad light curves are broadly consistent with additional flux from the shock of the ejecta hitting a red giant companion. SN~2011de is either the first external interaction of a SN Ia discovered in the UV or an extreme example of the intrinsic UV variations in SNe Ia.Comment: 6 pages, including 4 figures and 1 table Submitted to ApJ Letters Swift/UVOT photometry available through the Swift Optical/Ultraviolet Supernova Archive (SOUSA) at http://swift.gsfc.nasa.gov/docs/swift/sne/swift_sn.htm

    The First Ten Years of Swift Supernovae

    Full text link
    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.Comment: Invited review paper accepted into the Journal of High Energy Astrophysics for the dedicated issue: "Swift: Ten Years of Discovery" 8 pages, 4 figure

    The Changing Fractions of Type Ia Supernova NUV-Optical Subclasses with Redshift

    Get PDF
    UV and optical photometry of Type Ia supernovae (SNe Ia) at low redshift have revealed the existence of two distinct color groups, NUV-red and NUV-blue events. The color curves differ primarily by an offset, with the NUV-blue u- color curves bluer than the NUV-red curves by 0.4 mag. For a sample of 23 low-z SNe~Ia observed with Swift, the NUV-red group dominates by a ratio of 2:1. We compare rest-frame UV/optical spectrophotometry of intermediate and high-z SNe Ia with UVOT photometry and HST spectrophotometry of low-z SNe Ia, finding that the same two color groups exist at higher-z, but with the NUV-blue events as the dominant group. Within each red/blue group, we do not detect any offset in color for different redshifts, providing insight into how SN~Ia UV emission evolves with redshift. Through spectral comparisons of SNe~Ia with similar peak widths and phase, we explore the wavelength range that produces the UV/OPT color differences. We show that the ejecta velocity of NUV-red SNe is larger than that of NUV-blue objects by roughly 12% on average. This velocity difference can explain some of the UV/optical color difference, but differences in the strengths of spectral features seen in meanspectra require additional explanation. Because of the different b-v colors for these groups, NUV-red SNe will have their extinction underestimated using common techniques. This, in turn, leads to under-estimation of the optical luminosity of the NUV-blue SNe~Ia, in particular, for the high-redshift cosmological sample. Not accounting for this effect should thus produce a distance bias that increases with redshift and could significantly bias measurements of cosmological parameters.Comment: submitted to Ap

    Reddened, Redshifted, or Intrinsically Red? Understanding Near-Ultraviolet Colors of Type Ia Supernovae

    Get PDF
    Understanding the intrinsic colors of Type Ia supernovae (SNe Ia) is important to their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultra-Violet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening (E(B-V)=0.2 mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening (E(B-V)=0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe we can forward model the effects of redshift and reddening and directly compare with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw1-v color than SN2011fe reddened to the same b-v color. The absolute magnitudes show that two of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN2011fe is not a "normal" SN Ia in the UV, but has colors placing it at the blue extreme of our sample

    Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae

    Get PDF
    The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, ^56 Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of SN explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects.Comment: 10 pages. Submitted to Ap

    Interpreting Flux from Broadband Photometry

    Get PDF
    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broad-band photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by comparing in the natural units of the observations. We recommend that integrated flux measurements be made using a spectrum or spectral energy distribution which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.Comment: Accepted for publication in the Astronomical Journal. 16 pages, 9 figures. A PDF file with wide-screen friendly figures is linked from this blog post http://ultravioletsupernova.blogspot.com/2016/08/interpreting-flux-from-broadband.htm
    corecore