109,633 research outputs found

    Multiple Q-Adapted Integrals and Ito Formula of Noncommutative Stochastic Calculus in Fock Space

    Full text link
    We study the continuity property of multiple Q-adapted quantum stochastic integrals with respect to noncommuting integrands given by the non-adapted multiple integral kernels in Fock scale. The noncommutative algebra of relatively (exponentially) bounded nonadapted quantum stochastic processes is studied in the kernel form as introduced by Belavkin in 1991. The differential Q-adapted formula generalizing Ito product formula for adapted integrals is presented in both strong and weak sense as a particular case of the quantum stochastic nonadapted Ito formula.Comment: Due to appear in communications on stochastic analysis journal (KRP volume). 21 page

    Molecular simulations of entangled defect structures around nanoparticles in nematic liquid crystals

    Get PDF
    We investigate the defect structures forming around two nanoparticles in a Gay-Berne nematic liquid crystal using molecular simulations. For small separations, disclinations entangle both particles forming the figure of eight, the figure of omega and the figure of theta. These defect structures are similar in shape and occur with a comparable frequency to micron-sized particles studied in experiments. The simulations reveal fast transitions from one defect structure to another suggesting that particles of nanometre size cannot be bound together effectively. We identify the 'three-ring' structure observed in previous molecular simulations as a superposition of the different entangled and non-entangled states over time and conclude that it is not itself a stable defect structure.Comment: keywords: molecular-simulation, defects, nematic, disclination, algorithmic classification ; 8 pages, 7 figures, 1 tabl

    An analytical and experimental assessment of flexible road ironwork support structures

    Get PDF
    This paper describes work undertaken to investigate the mechanical performance of road ironwork installations in highways, concentrating on the chamber construction. The principal aim was to provide the background research which would allow improved designs to be developed to reduce the incidence of failures through improvements to the structural continuity between the installation and the surrounding pavement. In doing this, recycled polymeric construction materials (Jig Brix) were studied with a view to including them in future designs and specifications. This paper concentrates on the Finite Element (FE) analysis of traditional (masonry) and flexible road ironwork structures incorporating Jig Brix. The global and local buckling capacity of the Jig Brix elements was investigated and results compared well with laboratory measurements. FE models have also been developed for full-scale traditional (masonry) and flexible installations in a surrounding flexible (asphalt) pavement structure. Predictions of response to wheel loading were compared with full-scale laboratory measurements. Good agreement was achieved with the traditional (masonry) construction but poorer agreement for the flexible construction. Predictions from the FE model indicated that the use of flexible elements significantly reduces the tensile horizontal strain on the surface of the surrounding asphaltic material which is likely to reduce the incidence of surface cracking

    Monogroove heat pipe design: Insulated liquid channel with bridging wick

    Get PDF
    A screen mesh artery supported concentrically within the evaporator section of a heat pipe liquid channel retains liquid in the channel. Continued and uniform liquid feed to the heat pipe evaporation section (20) during periods of excessive heat transfer is assured. The overall design provides high evaporation and condensation film coefficients for the working fluid by means of the circumferential grooves in the walls of the vapor channel, while not interfering with the overall heat transport capability of the axial groove. The design has particular utility in zero-g environments

    Comparison of Models of Critical Opacity in the Quark-Gluon Plasma

    Full text link
    In this work we discuss two methods of calculation of quark propagation in the quark-gluon plasma. Both methods make use of the Nambu-Jona-Lasinio model. The essential difference of these calculations is the treatment of deconfinement. A model of confinement is not included in the work of Gastineau, Blanquier and Aichelin [hep-ph/0404207], however, the meson states they consider are still bound for temperatures greater than the deconfinement temperature T_c. On the other hand, our model deals with unconfined quarks and includes a description of the q(bar)q resonances found in lattice QCD studies that make use of the maximum entropy method (MEM). We compare the q{bar)q cross sections calculated in these models.Comment: 7 pages and 4 figures RevTe

    Polarimetric variations of binary stars. II. Numerical simulations for circular and eccentric binaries in Mie scattering envelopes

    Get PDF
    We present numerical simulations of the periodic polarimetric variations produced by a binary star placed at the center of an empty spherical cavity inside a circumbinary ellipsoidal and optically thin envelope made of dust grains. Mie single-scattering is considered along with pre- and post-scattering extinction factors which produce a time-varying optical depth and affect the morphology of the periodic variations. We are interested in the effects that various parameters will have on the average polarization, the amplitude of the polarimetric variations, and the morphology of the variability. We show that the absolute amplitudes of the variations are smaller for Mie scattering than for Thomson scattering. Among the four grain types that we have studied, the highest polarizations are produced by grains with sizes in the range 0.1-0.2 micron. In general, the variations are seen twice per orbit. In some cases, because spherical dust grains have an asymmetric scattering function, the polarimetric curves produced also show variations seen once per orbit. Circumstellar disks produce polarimetric variations of greater amplitude than circumbinary envelopes. Another goal of these simulations is to see if the 1978 BME (Brown, McLean, & Emslie, ApJ, 68, 415) formalism, which uses a Fourier analysis of the polarimetric variations to find the orbital inclination for Thomson-scattering envelopes, can still be used for Mie scattering. We find that this is the case, if the amplitude of the variations is sufficient and the true inclinations is i_true > 45 deg. For eccentric orbits, the first-order coefficients of the Fourier fit, instead of second-order ones, can be used to find almost all inclinations.Comment: 23 pages, 5 figures, to be published in Astronomical Journa

    Lifting classes for the fixed point theory of nn-valued maps

    Get PDF
    The theory of lifting classes and the Reidemeister number of single-valued maps of a finite polyhedron XX is extended to nn-valued maps by replacing liftings to universal covering spaces by liftings with codomain an orbit configuration space, a structure recently introduced by Xicot\'encatl. The liftings of an nn-valued map ff split into self-maps of the universal covering space of XX that we call lift-factors. An equivalence relation is defined on the lift-factors of ff and the number of equivalence classes is the Reidemeister number of ff. The fixed point classes of ff are the projections of the fixed point sets of the lift-factors and are the same as those of Schirmer. An equivalence relation is defined on the fundamental group of XX such that the number of equivalence classes equals the Reidemeister number. We prove that if XX is a manifold of dimension at least three, then algebraically the orbit configuration space approach is the same as one utilizing the universal covering space. The Jiang subgroup is extended to nn-valued maps as a subgroup of the group of covering transformations of the orbit configuration space and used to find conditions under which the Nielsen number of an nn-valued map equals its Reidemeister number. If an nn-valued map splits into nn single-valued maps, then its nn-valued Reidemeister number is the sum of their Reidemeister numbers.Comment: near complete rewrite from previous versio

    Bounds on thickness and loading noise of rotating blades and the favorable effect of blade sweep on noise reduction

    Get PDF
    The maxima of amplitudes of thickness and loading noise harmonics are established when the radial distribution of blade chord, thickness ratio, and lift coefficient is specified. It is first shown that only airfoils with thickness distribution and chordwise loading distributions which are symmetric with respect to midchord need be considered for finding the absolute maxima of thickness and loading noise. The resulting chordwise thickness and load distributions for these maximum noise conditions require infinite slope at some points along the chord but otherwise are uniform. It is shown that sweeping the blades reduces the thickness and loading noise, but there is no optimum sweep which generates the lowest noise

    Reversal Modes of Simulated Iron Nanopillars in an Obliquely Oriented Field

    Full text link
    Stochastic micromagnetic simulations are employed to study switching in three-dimensional magnetic nanopillars exposed to highly misaligned fields. The switching appears to proceed through two different decay modes, characterized by very different average lifetimes and different average values of the transverse magnetization components.Comment: 3 pages, 4 figure

    Short distance physics with heavy quark potentials

    Get PDF
    We present lattice studies of heavy quark potentials in the quenched approximation of QCD at finite temperatures. Both, the color singlet and color averaged potentials are calculated. While the potentials are well known at large distances, we give a detailed analysis of their short distance behavior (from 0.015 fm to 1 fm) near the critical temperature. At these distances we expect that the T-dependent potentials go over into the zero temperature potential. Indeed, we find evidences that the temperature influence gets suppressed and the potentials starts to become a unique function of the underlying distance scale. We use this feature to normalize the heavy quark potentials at short distances and extract the free energy of the quark system in a gluonic heat bath.Comment: Lattice2001(hightemp), 3 pages, 2 figure
    • …
    corecore