919 research outputs found
Sediment management for Southern California mountains, coastal plains and shoreline
The Environmental Quality Laboratory at Caltech and the Shore
Processes Laboratory at Scripps Institution of Oceanography have jointly
undertaken a study of regional sediment balance problems in coastal
southern California (see map in Figure 1). The overall objective in
this study is to define specific alternatives in sediment management that
may be implemented to alleviate a) existing sediment imbalance problems
(e.g. inland debris disposal, local shoreline erosion) and b) probable
future problems that have not yet manifested themselves. These
alternatives will be identified through a consideration of economic,
legal, and institutional issues as well as an analysis of governing
physical processes and engineering constraints.
The first part of this study (Phase I), which is currently under
way, involves a compilation and analysis of all available data in
an effort to obtain an accurate definition of the inland/coastal
regional sediment balance under natural conditions, and specific
quantitative effects man-made controls have on the overall natural process.
During FY77, substantial progress was made at EQL and SPL in
achieving the objectives of the initial Planning and Assessment Phase
of the CIT/SIO Sediment Management Project. Financial support came
from Los Angeles County, U.S. Geological Survey, Orange County,
U.S. Army Corps of Engineers, and discretionary funding provided by
a grant from the Ford Foundation. The current timetable for completion
of this phase is Fall 1978.
This report briefly describes the project status, including
general administration, special activities, and research work as of
January 1978
Effects of dams on beach sand supply
In 1975 a regional sediment management study was initiated as a joint applied research project of the Environmental Quality Laboratory, California Institute of Technology, and the Shore Processes Laboratory, Scripps Institution of Oceanography. The project is a broad-based, long-term multidisciplinary effort intended to define the regional
sediment budget for coastal Southern California (Figure 1), and to quantify the effects of various human activities on changes in that budget
Recommended from our members
Ontology-based Semantic Harmonization of HIV-associated Common Data Elements for Integration of Diverse HIV Research Datasets
Analysis of integrated, diverse, Human Immunodeficiency Virus (HIV)-associated datasets can increase knowledge and guide the development of novel and effective interventions for disease prevention and treatment by increasing breadth of variables and statistical power, particularly for sub-group analyses. This topic has been identified as a National Institutes of Health research priority, but few efforts have been made to integrate data across HIV studies. Our aims were to: 1) Characterize the semantic heterogeneity (SH) in the HIV research domain; 2) Identify HIV-associated common data elements (CDEs) in empirically generated and knowledge-based resources; 3) Create a formal representation of HIV-associated CDEs in the form of an HIV-associated Entities in Research Ontology (HERO); 4) Assess the feasibility of using HERO to semantically harmonize HIV research data. Our approach was guided by information/knowledge theory and the DIKW (Data Information Knowledge Wisdom) hierarchical model.
Our systematized review of the literature revealed that synergistic use of both ontologies and CDEs included integration, interoperability, data exchange, and data standardization. Moreover, methods and tools included use of experts for CDE identification, the Unified Medical Language System, natural language processing, Extensible Markup Language, Health Level 7, and ontology development tools (e.g., Protégé). Additionally, evaluation methods included expert assessment, quantification of mapping tasks between raters, assessment of interrater reliability, and comparison to established standards. We used these findings to inform our process for achieving the study aims.
For Aim 1, we analyzed eight disparate HIV-associated data dictionaries and developed a String Metric-assisted Assessment of Semantic Heterogeneity (SMASH) method, which aided identification of 127 (13%) homogeneous data element (DE) pairs and 1,048 (87%) semantically heterogeneous DE pairs. Most heterogeneous pairs (97%) were semantically-equivalent/syntactically-different, allowing us to determine that SH in the HIV research domain was high.
To achieve Aim 2, we used Clinicaltrials.gov, Google Search, and text mining in R to identify HIV-associated CDEs in HIV journal articles, HIV-associated datasets, AIDSinfo HIV/AIDS Glossary, AIDSinfo Drug Database, Logical Observation Identifiers Names and Codes (LOINC), Systematized Nomenclature of Medicine (SNOMED), and RxNORM (understood as prescription normalization). Two HIV experts then manually reviewed DEs from the journal articles and data dictionaries to confirm DE commonality and resolved semantic discrepancies through discussion. Ultimately, we identified 2,179 unique CDEs. Of all CDEs, data-driven approaches identified 2,055 (94%) (999 from the HIV/AIDS Glossary, 398 from the Drug Database, 91 from journal articles, and a total of 567 from LOINC, SNOMED, and RxNorm cumulatively). Expert-based approaches identified 124 (6%) unique CDEs from data dictionaries and confirmed the 91 CDEs from journal articles.
In Aim 3, we used the Protégé suite of ontology development tools and the 2,179 CDEs to develop the HERO. We modeled the ontology using the semantic structure of the Medical Entities Dictionary, available hierarchical information from the CDE knowledge resources, and expert knowledge. The ontology fulfilled most relevant criteria from Cimino’s desiderata and OntoClean ontology engineering principles, and it successfully answered eight competency questions.
Finally, for Aim 4, we assessed the feasibility of using HERO to semantically harmonize and integrate the data dictionaries from two diverse HIV-associated datasets. Two HIV experts involved in the development of HERO independently assessed each data dictionary. Of the 367 DEs in data dictionary 1 (D1), 181 (49.32%) were identified as CDEs and 186 (50.68%) were not CDEs, and of the 72 DEs in data dictionary 2 (D2), 37 (51.39%) were CDEs and 35 (48.61%) were not CDEs. The HIV experts then traversed HERO’s hierarchy to map CDEs from D1 and D2 to CDEs in HERO. Of the 181 CDEs in D1, 156 (86.19%) were found in HERO, and 25 (13.81%) were not. Similarly, of the 37 CDEs in D2 32 (86.48%) were found in HERO, and 5 (13.51%) were not. Interrater reliability for CDE identification as measured by Cohen’s Kappa was 0.900 for D1 and 0.892 for D2. Cohen’s Kappas for CDEs in D1 and D2 that were also identified in HERO were 0.885 and 0.688, respectively.
Subsequently, to demonstrate the integration of the two HIV-associated datasets, a sample of semantically harmonized CDEs in both datasets was categorically selected (e.g. administrative, demographic, and behavioral), and D2 sample size increases were calculated for race (e.g., White, African American/Black, Asian/Pacific Islander, Native American/Indian, and Hispanic/Latino) and for “intravenous drug use” from the integrated datasets. The average increase of D2 CDEs for six selected CDEs was 1,928%.
Despite the limitation of HERO developers also serving as evaluators, the contributions of the study to the fields of informatics and HIV research were substantial. Confirmatory contributions include: identification of effective CDE/ontology tools, and use of data-driven and expert-based methods. Novel contributions include: development of SMASH and HERO; and new contributions include documenting that SH is high in HIV-associated datasets, identifying 2,179 HIV-associated CDEs, creating two additional classifications of SH, and showing that using HERO for semantic harmonization of HIV-associated data dictionaries is feasible. Our future work will build upon this research by expanding the numbers and types of datasets, refining our methods and tools, and conducting an external evaluation
Sediment Management for Southern California Mountians, Coastal Plains and Shoreline. Part D: Special Inland Studies
In southern California the natural environmental system involves the continual relocation of sedimentary materials. Particles are eroded from inland areas where there is sufficient relief and, precipitation. Then, with reductions in hydraulic gradient along the stream course and at the shoreline, the velocity of surface runoff is reduced and there is deposition. Generally, coarse sand, gravel and larger particles are deposited near the base of the eroding surfaces (mountains and hills) and the finer sediments are deposited on floodplains, in bays or lagoons, and at the shoreline as delta deposits. Very fine silt and clay particles, which make up a significant part of the eroded material, are carried offshore where they eventually deposit in deeper areas. Sand deposited at the shoreline is gradually moved along the coast by waves and currents, and provides nourishment for local beaches. However, eventually much of this littoral material is also lost to offshore areas. Human developments in the coastal region have substantially altered the natural sedimentary processes, through changes in land use, the harvesting of natural resources (logging, grazing, and sand and gravel mining); the construction and operation of water conservation facilities and flood control structures; and coastal developments. In almost all cases these developments have grown out of recognized needs and have well served their primary purpose. At the time possible deleterious effects on the local or regional sediment balance were generally unforeseen or were felt to be of secondary importance. In 1975 a large-scale study of inland and coastal sedimentation processes in southern California was initiated by the Environmental Quality Laboratory at the California Institute of Technology and the Center for Coastal Studies at Scripps Institution of Oceanography. This volume is one of a series of reports from this study. Using existing data bases, this series attempts to define quantitatively inland and coastal sedimentation processes and identify the effects man has had on these processes. To resolve some issues related to long-term sediment management, additional research and data will be needed. In the series there are four Caltech reports that provide supporting studies for the summary report (EQL Report No. 17). These reports include: EQL Report 17-A Regional Geological History EQL Report 17-B Inland Sediment Movements by Natural Processes EQL Report 17-C Coastal Sediment Delivery by Major Rivers in Southern California EQL Report 17-D -- Special Inland Studies Additional supporting reports on coastal studies (shoreline sedimentation processes, control structures, dredging, etc.) are being published by the Center for Coastal Studies at Scripps Institution of Oceanography, La Jolla, California
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments
- …