411 research outputs found

    Softly Broken A_4 Symmetry for Nearly Degenerate Neutrino Masses

    Full text link
    The leptonic Higgs doublet model of neutrino masses is implemented with an A_4 discrete symmetry (the even permutation of 4 objects or equivalently the symmetry of the tetrahedron) which has 4 irreducible representations: 1, 1', 1'', and 3. The resulting spontaneous and soft breaking of A_4 provides a realistic model of charged-lepton masses as well as a nearly degenerate neutrino mass matrix. Phenomenological consequences at and below the TeV scale are discussed.Comment: 11 pages, no figur

    Suitability of litter amendments for the Australian chicken meat industry

    Get PDF
    This project focused on litter amendment products, which are used overseas during the rearing of meat chickens. Litter amendments are primarily used to manage ammonia volatilisation, especially when litter is reused, but also provide antimicrobial and environmental benefits, and increase the nutrient value of spent litter. This report summarises the outcomes of consultation with representatives and stakeholders of the Australian chicken meat industry, and summarises key findings from a literature review on litter amendments

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only ∌\sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    Contribution to muon g-2 from the \pi0\gamma and \eta\gamma intermediate states in the vacuum polarization

    Full text link
    Using new experimental data, we have calculated the contribution to the anomalous magnetic moment of the muon from the \pi0\gamma and \eta\gamma intermediate states in the vacuum polarization with high precision: a{\mu}(\pi0\gamma)+a{\mu}(\eta\gamma)=(54.7\pm 1.5)\times 10^{-11}. We have also found the small contribution from e+e-\pi0, e+e-\eta and \mu+\mu-\pi0 intermediate states equal to 0.5\times 10^{-11}.Comment: 6 pages, 2 figures, revte

    Spin-gravity coupling and gravity-induced quantum phases

    Full text link
    External gravitational fields induce phase factors in the wave functions of particles. The phases are exact to first order in the background gravitational field, are manifestly covariant and gauge invariant and provide a useful tool for the study of spin-gravity coupling and of the optics of particles in gravitational or inertial fields. We discuss the role that spin-gravity coupling plays in particular problems.Comment: 18 pages, 1 figur

    Heavy mass expansion, light-by-light scattering and the anomalous magnetic moment of the muon

    Get PDF
    Contributions from light-by-light scattering to (g_\mu-2)/2, the anomalous magnetic moment of the muon, are mediated by the exchange of charged fermions or scalar bosons. Assuming large masses M for the virtual particles and employing the technique of large mass expansion, analytical results are obtained for virtual fermions and scalars in the form of a series in (m_\mu /M)^2. This series is well convergent even for the case M=m_\mu. For virtual fermions, the expansion confirms published analytical formulae. For virtual scalars, the result can be used to evaluate the contribution from charged pions. In this case our result confirms already available numerical evaluations, however, it is significantly more precise.Comment: revtex4, eps figure

    Hadronic effects in leptonic systems: muonium hyperfine structure and anomalous magnetic moment of muon

    Full text link
    Contributions of hadronic effects to the muonium physics and anomalous magnetic moment of muon are considered. Special attention is paid to higher-order effects and the uncertainty related to the hadronic contribution to the hyperfine structure interval in the ground state of muonium.Comment: Presented at PSAS 2002 (St. Petersburg

    Supersymmetric Model of Muon Anomalous Magnetic Moment and Neutrino Masses

    Get PDF
    We propose the novel lepton-number relationship Lτ=Le+LÎŒL_\tau = L_e + L_\mu, which is uniquely realized by the interaction (Îœ^eÎŒ^−e^Îœ^ÎŒ)τ^c(\hat \nu_e \hat \mu - \hat e \hat \nu_\mu) \hat \tau^c in supersymmetry and may account for a possibly large muon anomalous magnetic moment. Neutrino masses (with bimaximal mixing) may be generated from the spontaneous and soft breaking of this lepton symmetry.Comment: 10 pages, including 2 figure

    Nearly Bi-Maximal Neutrino Mixing, Muon g-2 Anomaly and Lepton-Flavor-Violating Processes

    Get PDF
    We interpret the newly observed muon g-2 anomaly in the framework of a leptonic Higgs doublet model with nearly degenerate neutrino masses and nearly bi-maximal neutrino mixing. Useful constraints are obtained on the rates of lepton-flavor-violating rare decays Ï„â†’ÎŒÎł\tau \to \mu \gamma, Ό→eÎł\mu \to e \gamma and τ→eÎł\tau \to e \gamma as well as the ÎŒ\mu-ee conversion ratio RÎŒeR_{\mu e}. We find that Γ(Ό→eÎł)\Gamma (\mu \to e \gamma), Γ(τ→eÎł)\Gamma (\tau \to e \gamma) and RÎŒeR_{\mu e} depend crucially on possible non-zero but samll values of the neutrino mixing matrix element Ve3V_{e3}, and they are also sensitive to the Dirac-type CP-violating phase. In particular, we show that Γ(Ï„â†’ÎŒÎł)/mτ5\Gamma (\tau \to \mu \gamma)/m^5_\tau, Γ(Ό→eÎł)/mÎŒ5\Gamma (\mu \to e \gamma)/m^5_\mu and Γ(τ→eÎł)/mτ5\Gamma (\tau \to e \gamma)/m^5_\tau are approximately in the ratio 1:2∣Ve3∣2:2∣Ve3∣21: 2|V_{e3}|^2: 2|V_{e3}|^2 if ∣Ve3∣|V_{e3}| is much larger than O(10−2){\cal O}(10^{-2}), and in the ratio 2(Δmatm2)2:(Δmsun2)2:(Δmsun2)22 (\Delta m^2_{\rm atm})^2: (\Delta m^2_{\rm sun})^2:(\Delta m^2_{\rm sun})^2 if ∣Ve3∣|V_{e3}| is much lower than O(10−3){\cal O}(10^{-3}), where Δmatm2\Delta m^2_{\rm atm} and Δmsun2\Delta m^2_{\rm sun} are the corresponding mass-squared differences of atmospheric and solar neutrino oscillations.Comment: LaTex 6 pages (2 PS figures). Phys. Rev. D (in printing

    Anomalous Neutrino Interaction, Muon g-2, and Atomic Parity Nonconservation

    Get PDF
    We propose a simple unified description of two recent precision measurements which suggest new physics beyond the Standard Model of particle interactions, i.e. the deviation of sin⁥2ΞW\sin^2 \theta_W in deep inelastic neutrino-nucleon scattering and that of the anomalous magnetic moment of the muon. Our proposal is also consistent with a third precision measurement, i.e. that of parity nonconservation in atomic Cesium, which agrees with the Standard Model.Comment: 9 pages, including 1 figure, latest muon g-2 information adde
    • 

    corecore