5,714 research outputs found
Site symmetry analysis of the 738 nm defect in diamond
Based on a detailed analysis of polarized Raman and luminescence measurements of a ââmosaicââ diamond film, symmetry properties of a ubiquitous point defect observed in diamond films are determined. Specifically, the defect, which gives rise to emission at 738 nm, is determined unequivocally to be a â©110âȘâoriented defect with the transition dipole moment of the center oriented along the â©110âȘ symmetry axis. These results represent the first analysis of the symmetry properties of this point defect and aid in the development of structural model of the center. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69825/2/JAPIAU-78-6-4069-1.pd
Photoluminescence investigation of GaN films grown by metalorganic chemical vapor deposition on (100) GaAs
GaN films were grown on (100) GaAs substrates by metalorganic chemical vapor deposition and were found to be of (200) cubic or (111) cubic/(0002) hexagonal phase. Their photoluminescence characteristics remained invariant with material phase. We report assignment of bandâedge photoluminescence near 3.36 eV and 3.15â3.31 eV in apparently cubic GaN to intrinsic/bound excitons and phononâassisted, donorâacceptor pair recombination respectively, on the basis of observed temperature and intensity dependences. A free exciton energy of 3.375 eV is deduced at 6.5 K. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69757/2/JAPIAU-77-4-1705-1.pd
New variables, the gravitational action, and boosted quasilocal stress-energy-momentum
This paper presents a complete set of quasilocal densities which describe the
stress-energy-momentum content of the gravitational field and which are built
with Ashtekar variables. The densities are defined on a two-surface which
bounds a generic spacelike hypersurface of spacetime. The method used
to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a
suitable covariant action principle for the Ashtekar variables. As such, the
theory presented here is an Ashtekar-variable reformulation of the metric
theory of quasilocal stress-energy-momentum originally due to Brown and York.
This work also investigates how the quasilocal densities behave under
generalized boosts, i. e. switches of the slice spanning . It is
shown that under such boosts the densities behave in a manner which is similar
to the simple boost law for energy-momentum four-vectors in special relativity.
The developed formalism is used to obtain a collection of two-surface or boost
invariants. With these invariants, one may ``build" several different mass
definitions in general relativity, such as the Hawking expression. Also
discussed in detail in this paper is the canonical action principle as applied
to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and
improved quite a bit. To appear in Classical and Quantum Gravit
Observation of nearâbandâgap luminescence from boron nitride films
We report results from cathodoluminescence spectroscopy of boron nitride films grown on Si(100) substrates by ionâsourceâassisted magnetron sputtering of a hexagonal BN target. Three main peaks are observed in the nearâbandâgap region for hexagonal boron nitride films at energies of 4.90, 5.31, and 5.50 eV. We also report deepâlevel emission spectra of predominantly cubic boron nitride films which are correlated with sample growth conditions. In particular we show that the emission intensity, position, and linewidth are strongly dependent on the substrate bias voltage used during sample growth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69948/2/APPLAB-65-10-1251-1.pd
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
A Precision Calculation of the Next-to-Leading Order Energy-Energy Correlation Function
The O(alpha_s^2) contribution to the Energy-Energy Correlation function (EEC)
of e+e- -> hadrons is calculated to high precision and the results are shown to
be larger than previously reported. The consistency with the leading logarithm
approximation and the accurate cancellation of infrared singularities exhibited
by the new calculation suggest that it is reliable. We offer evidence that the
source of the disagreement with previous results lies in the regulation of
double singularities.Comment: 6 pages, uuencoded LaTeX and one eps figure appended Complete paper
as PostScript file (125 kB) available at:
http://www.phys.washington.edu/~clay/eecpaper1/paper.htm
Limits on Quaoar's Atmosphere
Here we present high cadence photometry taken by the Acquisition Camera on Gemini South, of a close passage by the ~540 km radius Kuiper belt object, (50000) Quaoar, of a r' = 20.2 background star. Observations before and after the event show that the apparent impact parameter of the event was 0."019 ± 0."004, corresponding to a close approach of 580 ± 120 km to the center of Quaoar. No signatures of occultation by either Quaoar's limb or its potential atmosphere are detectable in the relative photometry of Quaoar and the target star, which were unresolved during closest approach. From this photometry we are able to put constraints on any potential atmosphere Quaoar might have. Using a Markov chain Monte Carlo and likelihood approach, we place pressure upper limits on sublimation supported, isothermal atmospheres of pure N_2, CO, and CH_4. For N_2 and CO, the upper limit surface pressures are 1 and 0.7 Όbar, respectively. The surface temperature required for such low sublimation pressures is ~33 K, much lower than Quaoar's mean temperature of ~44 K measured by others. We conclude that Quaoar cannot have an isothermal N_2 or CO atmosphere. We cannot eliminate the possibility of a CH_4 atmosphere, but place upper surface pressure and mean temperature limits of ~138 nbar and ~44 K, respectively
Understanding concurrent earcons: applying auditory scene analysis principles to concurrent earcon recognition
Two investigations into the identification of concurrently presented, structured sounds, called earcons were carried out. One of the experiments investigated how varying the number of concurrently presented earcons affected their identification. It was found that varying the number had a significant effect on the proportion of earcons identified. Reducing the number of concurrently presented earcons lead to a general increase in the proportion of presented earcons successfully identified. The second experiment investigated how modifying the earcons and their presentation, using techniques influenced by auditory scene analysis, affected earcon identification. It was found that both modifying the earcons such that each was presented with a unique timbre, and altering their presentation such that there was a 300 ms onset-to-onset time delay between each earcon were found to significantly increase identification. Guidelines were drawn from this work to assist future interface designers when incorporating concurrently presented earcons
Cauchy Horizons, Thermodynamics and Closed Time-like Curves in Planar Supersymmetric Space-times
We study geodesically complete, singularity free space-times induced by
supersymmetric planar domain walls interpolating between Minkowski and anti-de
Sitter () vacua. A geodesically complete space-time without closed
time-like curves includes an infinite number of semi-infinite Minkowski
space-times, separated from each other by a region of space-time. These
space-times are closely related to the extreme Reissner Nordstr\" om (RN) black
hole, exhibiting Cauchy horizons with zero Hawking temperature, but in contrast
to the RN black hole there is no entropy. Another geodesically complete
extension with closed time-like curves involves space-times connecting a finite
number of semi-infinite Minkowski space-times.Comment: 11 pages, 1 figure appended, phyzz
Age-stratified heritability estimation in the Framingham Heart Study families
The Framingham Heart Study provides a unique source of longitudinal family data related to CVD risk factors. Age-stratified heritability estimates were obtained over three age groups (31â49 years, 50â60 years, and 61â79 years), reflecting the longitudinal nature of the data, for four quantitative traits. Age-adjusted heritability estimates were obtained at a single common time point for the same four quantitative traits. The importance of these groups is that they consist of the same individuals. The highest age-stratified heritability estimate (h(2 )= 0.88 (± 0.06)) was for height in the model adjusting for gender over all three age groups. SBP gave the lowest heritability estimate (h(2 )= 0.15 (± 0.11)) for the 70 age group in the model adjusting for gender, height, BMI, smoker, and drinker. BMI had slightly higher estimates (h(2 )= 0.64 (± 0.11)) in the 40 age group than previously published. The highest age-adjusted heritability estimate (h(2 )= 0.90 (± 0.06)) was for height in the model adjusting for gender. SBP gave the lowest heritability estimate (h(2 )= 0.38 (± 0.09)) for unadjusted model. These results indicate that some common, complex traits may vary little in their genetic architecture over time and suggest that a common set of genes may be contributing to observed variation for these longitudinally collected phenotypes
- âŠ