152,913 research outputs found
Modelling the Incidence of Self-Employment: Individual and Employment Type Heterogeneity
Modelling the incidence of self-employment has traditionally proved problematic. Whilst the individual supply side characteristics of the self-employed are well documented, we argue that the literature has largely neglected demand-side aspects. We explore the determinants of self-employment using individual level data drawn from the U.S. Survey of Consumer Finances (SCF). We present results from an econometric framework, the Parameterised Dogit model, that allows us to separately, and simultaneously, model individual heterogeneity (i.e. supply side) and employment type heterogeneity (i.e. demand-side) influences that determine self-employment. Our findings suggest that whilst individual characteristics are important determinants of self-employment, there are also factors which are specific to the type of employment that influence whether an individual is self-employed
Sharing storage using dirty vectors
Consider a computation F with n inputs (independent variables) and m outputs (dependent variables) and suppose that we wish to evaluate the Jacobian of F. Automatic differentiation commonly performs this evaluation by associating vector storage either with the program variables (in the case of forward-mode automatic differentiation) or with the adjoint variables (in the case of reverse). Each vector component contains a partial derivative with respect to an independent variable, or a partial derivative of a dependent variable, respectively. The vectors may be full vectors, or they may be dynamically managed sparse data structures. In either case, many of these vectors will be scalar multiples of one another. For example, any intermediate variable produced by a unary operation in the forward mode will have a derivative vector that is a multiple of the derivative for the argument. Any computational graph node that is read just once during its lifetime will have an adjoint vector that is a multiple of the adjoint of the node that reads it. It is frequently wasteful to perform component multiplications explicitly. A scalar multiple of another vector can be replaced by a single multiplicative "scale factor" together with a pointer to the other vector. Automated use of this "dirty vector" technique can save considerable memory management overhead and dramatically reduce the number of floating-point operations required. In particular, dirty vectors often allow shared threads of computation to be reverse-accumulated cheaply. The mechanism permits a number of generalizations, some of which give efficient techniques for preaccumulation
Microwave backscattering theory and active remote sensing of the ocean surface
The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures
Development of mathematical models for processing S-193 radar altimeter data
There are no author-identified significant results in this report
Development of mathematical models for processing altimeter data
There are no author-identified significant results in this report
Acquisition of quick-look data from SL-2
There are no author-identified significant results in this report
Foreground removal requirements for measuring large-scale CMB B-modes in light of BICEP2
The most convincing confirmation that the B-mode polarization signal detected
at degree scales by BICEP2 is due to the Cosmic Microwave Background (CMB)
would be the measurement of its large-scale counterpart. We assess the
requirements for diffuse component separation accuracy over large portions of
the sky in order to measure the large-scale B-mode signal corresponding to a
tensor to scalar ratio of r=0.1-0.2.
We use the method proposed by Bonaldi & Ricciardi (2011) to forecast the
performances of different simulated experiments taking into account noise and
foreground removal issues. We do not consider instrumental systematics, and we
implicitly assume that they are not the dominant source of error. If this is
the case, the confirmation of an r=0.1-0.2 signal is achievable by Planck even
for conservative assumptions regarding the accuracy of foreground cleaning. Our
forecasts suggest that the combination of this experiment with BICEP2 will lead
to an improvement of 25-45% in the constraint on r.
A next-generation CMB polarization satellite, represented in this work by the
COrE experiment, can reduce dramatically (by almost another order of magnitude)
the uncertainty on r. In this case, however, the accuracy of foreground removal
becomes critical to fully benefit from the increase in sensitivity.Comment: 8 pages, 3 figures, 1 table. Accepted by MNRA
Recommended from our members
How much improvement in mental health can be expected when people stop smoking? Findings from a national survey
Background and aims: There is evidence that mental health improves when smokers stop. This study aimed to assess in a nationally representative sample how far anxiety and depression in long-term ex-smokers can be expected eventually to reach levels found in those who have never smoked. Methods: Data from the Smoking Toolkit Study (STS) were used. The STS involves monthly household surveys of representative samples of the adult population of England. Anxiety and depression were compared using an item from the EQ5-D in respondents aged 40+ years where were either current smokers, never smokers, or had stopped for at least a year, adjusting statistically for age, gender and social grade. Results: The prevalence of anxiety or depression was 10.0% (95% CI 9.1-10.9) in never smokers, 18.3% (95% CI 16.0-20.6) in current smokers, and 11.3% (95% CI 9.6-13.0) in long-term ex-smokers. After adjusting for age, sex and social grade, long-term ex-smokers were similar to never smokers (OR=1.15, 95% CI=0.94-1.41). Current smokers had higher prevalence than never smokers (OR=1.69, 95% CI=1.39-2.04) and ex-smokers (OR=1.47, 95% CI=1.15-1.86). Conclusions: Prevalence of anxiety and depression in long-term ex-smokers appears to be similar to what is found in never smokers
Charged Particle Motion in a Highly Ionized Plasma
A recently introduced method utilizing dimensional continuation is employed
to compute the energy loss rate for a non-relativistic particle moving through
a highly ionized plasma. No restriction is made on the charge, mass, or speed
of this particle. It is, however, assumed that the plasma is not strongly
coupled in the sense that the dimensionless plasma coupling parameter
g=e^2\kappa_D/ 4\pi T is small, where \kappa_D is the Debye wave number of the
plasma. To leading and next-to-leading order in this coupling, dE/dx is of the
generic form g^2 \ln[C g^2]. The precise numerical coefficient out in front of
the logarithm is well known. We compute the constant C under the logarithm
exactly for arbitrary particle speeds. Our exact results differ from
approximations given in the literature. The differences are in the range of 20%
for cases relevant to inertial confinement fusion experiments. The same method
is also employed to compute the rate of momentum loss for a projectile moving
in a plasma, and the rate at which two plasmas at different temperatures come
into thermal equilibrium. Again these calculations are done precisely to the
order given above. The loss rates of energy and momentum uniquely define a
Fokker-Planck equation that describes particle motion in the plasma. The
coefficients determined in this way are thus well-defined, contain no arbitrary
parameters or cutoffs, and are accurate to the order described. This
Fokker-Planck equation describes the longitudinal straggling and the transverse
diffusion of a beam of particles. It should be emphasized that our work does
not involve a model, but rather it is a precisely defined evaluation of the
leading terms in a well-defined perturbation theory.Comment: Comments: Published in Phys. Rep. 410/4 (2005) 237; RevTeX, 111
Pages, 17 Figures; Transcription error corrected in temperature equilibration
rate (3.61) and (12.44) which replaces \gamma-2 by \gamma-
Rigorous theory of nuclear fusion rates in a plasma
Real-time thermal field theory is used to reveal the structure of plasma
corrections to nuclear reactions. Previous results are recovered in a fashion
that clarifies their nature, and new extensions are made. Brown and Yaffe have
introduced the methods of effective quantum field theory into plasma physics.
They are used here to treat the interesting limiting case of dilute but very
highly charged particles reacting in a dilute, one-component plasma. The highly
charged particles are very strongly coupled to this background plasma. The
effective field theory proves that this mean field solution plus the one-loop
term dominate; higher loop corrections are negligible even though the problem
involves strong coupling. Such analytic results for very strong coupling are
rarely available, and they can serve as benchmarks for testing computer models.Comment: 4 pages and 2 figures, presented at SCCS 2005, June 20-25, Moscow,
Russi
- …