2,910 research outputs found
Health communication and adolescents: What do their emails tell us?
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Family Practice following peer review. The definitive publisher-authenticated version Brown, B.J. et al (2008) Health communication and adolescents: What do their emails tell us? Family Practice, 25, pp.304-311. is available online at: http://dx.doi.org/10.1093/fampra/cmn029Background. It is widely known that barriers exist in communication between adolescents and health professionals. However, little is known about the actual language used by young people articulating such difficulties and whether email might allow them to overcome these problems.
Objectives. The aims of this study were to investigate concerns and difficulties relating to communication among adolescents seeking online health advice.
Methods. The study design was a corpus linguistic analysis of a million-word adolescent health email database based on 62 794 emails from young people requesting health advice from a prominent UK-hosted and doctor-led website.
Results. Young people reported various concerns about their health. They described numerous difficulties in disclosing such concerns to other people, in particular to parents and doctors.
However, they readily expressed their concerns by email, displaying elevated levels of directness, particularly in relation to potentially sensitive or embarrassing topics.
Conclusion. Email has the potential to facilitate and supplement face-to-face consultations with health professionals. Increased adoption of email by health providers may be an efficient means of engaging with a generation often reluctant to access more traditional health care services and thus encourage them to enter the primary care setting more readily
Symmetries and the identity of physical states
The paper proposes a combined account of identity for physical states and direct empirical significance for symmetries according to which symmetry-related state variables designate distinct physical states if and only if the symmetry that relates them has direct empirical significance. Strengthening an earlier result, I show that, given this combined account, the local gauge symmetries in our leading contemporary theories of particle physics do not have any direct empirical significance
Cardiac Deletion of Smyd2 Is Dispensable for Mouse Heart Development
Chromatin modifying enzymes play a critical role in cardiac differentiation. Previously, it has been shown that the targeted deletion of the histone methyltransferase, Smyd1, the founding member of the SET and MYND domain containing (Smyd) family, interferes with cardiomyocyte maturation and proper formation of the right heart ventricle. The highly related paralogue, Smyd2 is a histone 3 lysine 4- and lysine 36-specific methyltransferase expressed in heart and brain. Here, we report that Smyd2 is differentially expressed during cardiac development with highest expression in the neonatal heart. To elucidate the functional role of Smyd2 in the heart, we generated conditional knockout (cKO) mice harboring a cardiomyocyte-specific deletion of Smyd2 and performed histological, functional and molecular analyses. Unexpectedly, cardiac deletion of Smyd2 was dispensable for proper morphological and functional development of the murine heart and had no effect on global histone 3 lysine 4 or 36 methylation. However, we provide evidence for a potential role of Smyd2 in the transcriptional regulation of genes associated with translation and reveal that Smyd2, similar to Smyd3, interacts with RNA Polymerase II as well as to the RNA helicase, HELZ
On Closing the Circle
Ghirardi sought to “close the circle”—to find a place for human experience of measurement outcomes within quantum mechanics. I argue that Ghirardi’s spontaneous collapse approach succeeds at this task, and in fact does so even without the postulation of a particular account of “primitive ontology”, such as a mass density distribution or a discrete “flashes”. Nevertheless, I suggest that there is a remaining ontological problem facing spontaneous collapse theories concerning the use of classical concepts like “particle” in quantum mechanical explanation at the micro-level. Neither the mass density nor the flash ontology is any help with this problem
Not just a pretty picture: Mapping Leaf Area Index at 10 m resolution using Sentinel-2
Achieving the Global Climate Observing System goal of 10 m resolution leaf area index (LAI) maps is critical for applications related to climate adaptation, sustainable agriculture, and ecosystem monitoring. Five strategies for producing 10 m LAI maps from Sentinel-2 (S2) imagery are evaluated: i. bi-cubic interpolation of 20 m resolution S2 LAI maps from the Simplified Level 2 Prototype Processor Version 1 (SL2PV1) as currently performed by the Sentinel Applications Platform (SNAP), ii. applying SL2PV1 to S2 reflectance bands spatially downscaled to 10 m using bi-cubic interpolation (BICUBIC), iii. Applying SL2PV1 to S2 reflectance bands spatially downscaled to 10 m using Area to Point Regression Kriging (ATPRK), iv. using a recalibrated version of SL2PV1 (SL2PV2) requiring only three S2 10m bands, and iv) a novel use of the previously developed Active Learning Regularization (ALR) approach to locally approximate the SL2PV1 algorithm using only 10 m bands. Algorithms were assessed in terms of per-pixel accuracy and spatial metrics when comparing 10 m LAI maps produced using either actual S2 imagery or S2 imagery synthesized from airborne hyperspectral imagery to reference 10 m LAI maps traceable to in-situ fiducial reference measurements at 10 sites across the continental US. ATPRK and ALR algorithms had the lowest precision error of ~0.15 LAI, compared to 0.19 LAI for SNAP and BICUBIC and 0.35 LAI for SL2PV2, and ranked highest in terms of local correlation and Structural Similarity Index measure as well as qualitative agreement with reference maps. SL2PV2 LAI showed evidence of saturation over forests related to decreased sensitivity of input visible reflectance. All algorithms had a similar uncertainty of ~0.55 LAI compared to traceable reference maps, due to the trade-off between bias and precision. However, ATPRK and ALR uncertainty reduced to 0.11 LAI and 0.16 LAI, respectively, when compared to reference maps that ignored canopy clumping. These results suggest that both ATPRK and ALR are suitable for producing 10 m S2 LAI maps assuming bias due to local clumping can be corrected in the underlying SL2PV1 algorithm
Geometric K-Homology of Flat D-Branes
We use the Baum-Douglas construction of K-homology to explicitly describe
various aspects of D-branes in Type II superstring theory in the absence of
background supergravity form fields. We rigorously derive various stability
criteria for states of D-branes and show how standard bound state constructions
are naturally realized directly in terms of topological K-cycles. We formulate
the mechanism of flux stabilization in terms of the K-homology of non-trivial
fibre bundles. Along the way we derive a number of new mathematical results in
topological K-homology of independent interest.Comment: 45 pages; v2: References added; v3: Some substantial revision and
corrections, main results unchanged but presentation improved, references
added; to be published in Communications in Mathematical Physic
- …