4 research outputs found

    Scale-dependent effects of marine subsidies on the island biogeographic patterns of plants

    Get PDF
    Although species richness can be determined by different mechanisms at different spatial scales, the role of scale in the effects of marine inputs on island biogeography has not been studied explicitly. Here, we evaluated the potential influence of island characteristics and marine inputs (seaweed wrack biomass and marine-derived nitrogen in the soil) on plant species richness at both a local (plot) and regional (island) scale on 92 islands in British Columbia, Canada. We found that the effects of subsidies on species richness depend strongly on spatial scale. Despite detecting no effects of marine subsidies at the island scale, we found that as plot level subsidies increased, species richness decreased; plots with more marine-derived nitrogen in the soil hosted fewer plant species. We found no effect of seaweed wrack at either scale. To identify potential mechanisms underlying the decrease in diversity, we fit a spatially explicit joint species distribution model to evaluate species level responses to marine subsidies and effects of biotic interactions among species. We found mixed evidence for competition for both light and nutrients, and cannot rule out an alternative mechanism; the observed decrease in species richness may be due to disturbances associated with animal-mediated nutrient deposits, particularly those from North American river otters (Lontra canadensis). By evaluating the scale-dependent effects of marine subsidies on island biogeographic patterns of plants and revealing likely mechanisms that act on community composition, we provide novel insights on the scale dependence of a fundamental ecological theory, and on the rarely examined links between marine and terrestrial ecosystems often bridged by animal vectors

    Biogeographic features mediate marine subsidies to island food webs

    Get PDF
    Although marine subsidies often enrich terrestrial ecosystems, their influence is known to be context-dependent. Additionally, the multitrophic impact of marine subsidies has not been traced through food webs across physically diverse islands. Here, we test predictions about how island characteristics can affect marine enrichment of food web constituents and how nutrients flow through island food webs. To evaluate enrichment and trace marine nutrients across food webs, we used stable isotopes of soil, flora, and fauna (n = 4752 samples) collected from 97 islands in British Columbia, Canada. Island area was the strongest predictor of enrichment across taxa; we found that samples were more 15N-rich on smaller islands. Enrichment declined with distance from shore but less so on small islands, implying a higher per-unit-area subsidy effect. These area and distance-to-shore effects were taxon-specific, and nearly twice as strong in basal food web groups. We also found that increases in δ15N correlated with increases in %N in basal trophic groups, as well as in songbirds, implying biologically relevant uptake of a potentially limiting nutrient. Path analysis demonstrated that subsidies in soil flow through plants and detritivores, and into upper-level consumers. Our results reveal an interplay between island biogeography and marine subsidies in shaping island food webs through bottom-up processes

    Scale-dependent effects of marine subsidies on the island biogeographic patterns of plants

    No full text
    Although species richness can be determined by different mechanisms at different spatial scales, the role of scale in the effects of marine inputs on island biogeography has not been studied explicitly. Here, we evaluated the potential influence of island characteristics and marine inputs (seaweed wrack biomass and marine-derived nitrogen in the soil) on plant species richness at both a local (plot) and regional (island) scale on 92 islands in British Columbia, Canada. We found that the effects of subsidies on species richness depend strongly on spatial scale. Despite detecting no effects of marine subsidies at the island scale, we found that as plot level subsidies increased, species richness decreased; plots with more marine-derived nitrogen in the soil hosted fewer plant species. We found no effect of seaweed wrack at either scale. To identify potential mechanisms underlying the decrease in diversity, we fit a spatially explicit joint species distribution model to evaluate species level responses to marine subsidies and effects of biotic interactions among species. We found mixed evidence for competition for both light and nutrients, and cannot rule out an alternative mechanism; the observed decrease in species richness may be due to disturbances associated with animal-mediated nutrient deposits, particularly those from North American river otters (Lontra canadensis). By evaluating the scale-dependent effects of marine subsidies on island biogeographic patterns of plants and revealing likely mechanisms that act on community composition, we provide novel insights on the scale dependence of a fundamental ecological theory, and on the rarely examined links between marine and terrestrial ecosystems often bridged by animal vectors

    Biogeographic features mediate marine subsidies to island food webs

    No full text
    Abstract Although marine subsidies often enrich terrestrial ecosystems, their influence is known to be context‐dependent. Additionally, the multitrophic impact of marine subsidies has not been traced through food webs across physically diverse islands. Here, we test predictions about how island characteristics can affect marine enrichment of food web constituents and how nutrients flow through island food webs. To evaluate enrichment and trace marine nutrients across food webs, we used stable isotopes of soil, flora, and fauna (n = 4752 samples) collected from 97 islands in British Columbia, Canada. Island area was the strongest predictor of enrichment across taxa; we found that samples were more 15N‐rich on smaller islands. Enrichment declined with distance from shore but less so on small islands, implying a higher per‐unit‐area subsidy effect. These area and distance‐to‐shore effects were taxon‐specific, and nearly twice as strong in basal food web groups. We also found that increases in δ15N correlated with increases in %N in basal trophic groups, as well as in songbirds, implying biologically relevant uptake of a potentially limiting nutrient. Path analysis demonstrated that subsidies in soil flow through plants and detritivores, and into upper‐level consumers. Our results reveal an interplay between island biogeography and marine subsidies in shaping island food webs through bottom‐up processes
    corecore