4,383 research outputs found
Relationship of \u3cem\u3eSphaeroma quoianum\u3c/em\u3e to Sediment Characteristics and Invertebrate Community
Many important wetland functions are tied to sediment dynamics, which are influenced by infaunal invertebrate communities. These communities are sensitive to changes in sediment structure and to colonization by non-native species. In a southern California salt marsh, the non-native isopod Sphaeroma quoianum has created dense networks of burrows within the marsh banks. Since this isopod increases erosion in many areas and can change local invertebrate communities, its possible contribution to habitat loss in this already-scarce southern California ecosystem is an important issue. To determine the relationship of S. quoianum to invertebrate community and sediment characteristics, three burrowed transects and one unburrowed transect were surveyed and sampled for invertebrate and sediment cores. This study tested the association between burrows and grain size distribution, sediment carbon content, respiration rates, and invertebrate community composition. Sphaeroma quoianum burrows were correlated with altered invertebrate community composition, decreased carbon content, and steep marsh bluffs. These results highlight the potential susceptibility of salt marsh habitat with steep edges to invasion by non-native species. These results also suggest that S. quoianum invasion of salt marsh habitats can alter native communities and ecosystem functions; thus, incipient invasions should be of concern to managers and ecologists alike
Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy?
Vitamin C (VitC), in addition to its role as a general antioxidant, has long been considered to possess direct anti-cancer activity at high doses. VitC acts through oxidant and epigenetic mechanisms, which at high doses can exert direct killing of tumor cells in vitro and delay tumor growth in vivo. Recently, it has also been shown that pharmacologic-dose VitC can contribute to control of tumors by modulating the immune system, and studies have been done interrogating the role of physiologic-dose VitC on novel adoptive cellular therapies (ACTs). In this review, we discuss the effects of VitC on anti-tumor immune cells, as well as the mechanisms underlying those effects. We address important unanswered questions concerning both VitC and ACTs, and outline challenges and opportunities facing the use of VitC in the clinical setting as an adjunct to immune-based anti-cancer therapies
Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field grown transgenic tobacco plants
Photorespiration is essential for C3 plants, enabling oxygenic photosynthesis through the scavenging of 2âphosphoglycolate. Previous studies have demonstrated that overexpression of the Lâ and Hâproteins of the photorespiratory glycine cleavage system results in an increase in photosynthesis and growth in Arabidopsis thaliana. Here, we present evidence that under controlled environment conditions an increase in biomass is evident in tobacco plants overexpressing the Hâprotein. Importantly, the work in this paper provides a clear demonstration of the potential of this manipulation in tobacco grown in field conditions, in two separate seasons. We also demonstrate the importance of targeted overexpression of the Hâprotein using the leafâspecific promoter STâLS1. Although increases in the Hâprotein driven by this promoter have a positive impact on biomass, higher levels of overexpression of this protein driven by the constitutive CaMV 35S promoter result in a reduction in the growth of the plants. Furthermore in these constitutive overexpressor plants, carbon allocation between soluble carbohydrates and starch is altered, as is the protein lipoylation of the enzymes pyruvate dehydrogenase and alphaâketoglutarate complexes. Our data provide a clear demonstration of the positive effects of overexpression of the Hâprotein to improve yield under field conditions
Legume based plant mixtures for delivery of multiple ecosystem services: An overview of benefits
As costs for mineral fertilizers rise, legume-based leys are recognised as a potential alternative nitrogen source for crops. Here we demonstrate that including species-rich legume-based leys in the rotation helps to maximize synergies between agricultural productivity and other ecosystem services. By using functionally diverse plant species mixtures these services can be optimised and fine-tuned to regional and farm-specific needs. Field experiments run over three years at multiple locations showed that the stability of ley performance was greater in multi-species mixtures than in legume monocultures. In addition, mixing different legume species in the ley helps to suppress both early and late weeds. Further, combining complementary phenologies of different legume species extended forage availability for key pollinator species. Finally, widening the range of legume species increases opportunities to build short term leys into rotations on conventional farms via cover cropping or undersowing
Recommended from our members
Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data.
Chimeric antigen receptor (CAR) T-cell therapy has shown promise in the treatment of haematological cancers and is currently being investigated for solid tumours, including high-grade glioma brain tumours. There is a desperate need to quantitatively study the factors that contribute to the efficacy of CAR T-cell therapy in solid tumours. In this work, we use a mathematical model of predator-prey dynamics to explore the kinetics of CAR T-cell killing in glioma: the Chimeric Antigen Receptor T-cell treatment Response in GliOma (CARRGO) model. The model includes rates of cancer cell proliferation, CAR T-cell killing, proliferation, exhaustion, and persistence. We use patient-derived and engineered cancer cell lines with an in vitro real-time cell analyser to parametrize the CARRGO model. We observe that CAR T-cell dose correlates inversely with the killing rate and correlates directly with the net rate of proliferation and exhaustion. This suggests that at a lower dose of CAR T-cells, individual T-cells kill more cancer cells but become more exhausted when compared with higher doses. Furthermore, the exhaustion rate was observed to increase significantly with tumour growth rate and was dependent on level of antigen expression. The CARRGO model highlights nonlinear dynamics involved in CAR T-cell therapy and provides novel insights into the kinetics of CAR T-cell killing. The model suggests that CAR T-cell treatment may be tailored to individual tumour characteristics including tumour growth rate and antigen level to maximize therapeutic benefit
Differential expression of microRNA-206 and its target genes in pre-eclampsia
Objectives: Pre-eclampsia is a multi-system disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify novel circulating miRNAs in maternal plasma that may be associated with pre-eclampsia.
Methods: Plasma samples were obtained at 16 and 28 weeks of gestation from 18 women who later developed pre-eclampsia (cases) and 18 matched women with normotensive pregnancies (controls). We studied miRNA expression profiles in plasma and subsequently confirmed miRNA and target gene expression in placenta samples. Placental samples were obtained from an independent cohort of 19 women with pre-eclampsia matched with 19 women with normotensive pregnancies.
Results: From the microarray, we identified 1 miRNA that was significantly differentially expressed between cases and controls at 16 weeks of gestation and 6 miRNAs that were significantly differentially expressed at 28 weeks. Following qPCR validation only one, miR-206, was found to be significantly increased in 28 week samples in women who later developed pre-eclampsia (1.4 fold change ± 0.2). The trend for increase in miR-206 expression was mirrored within placental tissue from women with pre-eclampsia. In parallel, IGF-1, a target gene of miR-206, was also found to be down-regulated (0.41 ± 0.04) in placental tissue from women with pre-eclampsia. miR-206 expression was also detectable in myometrium tissue and trophoblast cell lines.
Conclusions: Our pilot study has identified miRNA-206 as a novel factor up-regulated in pre-eclampsia within the maternal circulation and in placental tissue
Somatic piRNAs and Transposons are Differentially Regulated During Skeletal Muscle Atrophy and Programmed Cell Death [preprint]
PiWi-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, are ~27 nt long, map antisense to transposons, are oxidation resistant, exhibit a uridine bias at their first nucleotide, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 20 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed when cells become committed to undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is associated with the targeted repression of several retrotransposons and the induction of specific DNA transposons. The developmental changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death
Recommended from our members
Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death
PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, âŒ27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5â uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death
PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species
<p>Abstract</p> <p>Background</p> <p>The genus <it>Vibrio </it>is a diverse group of Gram-negative bacteria comprised of 74 species. Furthermore, the genus has and is expected to continue expanding with the addition of several new species annually. Consequently, it is of paramount importance to have a method which is able to reliably and efficiently differentiate the numerous <it>Vibrio </it>species.</p> <p>Results</p> <p>In this study, a novel and rapid polymerase chain reaction (PCR)-based intergenic spacer (IGS)-typing system for vibrios was developed that is based on the well-known IGS regions located between the 16S and 23S rRNA genes on the bacterial chromosome. The system was optimized to resolve heteroduplex formation as well as to take advantage of capillary gel electrophoresis technology such that reproducible analyses could be achieved in a rapid manner. System validation was achieved through testing of 69 archetypal <it>Vibrio </it>strains, representing 48 <it>Vibrio </it>species, from which an 'IGS-type' profile database was generated. These data, presented here in several cluster analyses, demonstrated successful differentiation of the 69 type strains showing that this PCR-based fingerprinting method easily discriminates bacterial strains at the species level among <it>Vibrio</it>. Furthermore, testing 36 strains each of <it>V. parahaemolyticus </it>and <it>V. vulnificus</it>, important food borne pathogens, isolated from a variety of geographical locations with the IGS-typing method demonstrated distinct IGS-typing patterns indicative of subspecies divergence in both populations making this technique equally useful for intraspecies differentiation, as well.</p> <p>Conclusion</p> <p>This rapid, reliable and efficient IGS-typing system, especially in combination with 16S rRNA gene sequencing, has the capacity to not only discern and identify vibrios at the species level but, in some cases, at the sub-species level, as well. This procedure is particularly well-suited for preliminary species identification and, lends itself nicely to epidemiological investigations providing information more quickly than other time-honoured methods traditionally used in these types of analyses.</p
Associations between Self-Reported Gastrointestinal Illness and Water System Characteristics in Community Water Supplies in Rural Alabama: A Cross-Sectional Study
Background: Community water supplies in underserved areas of the United States may be associated with increased microbiological contamination and risk of gastrointestinal disease. Microbial and health risks affecting such systems have not been systematically characterized outside outbreak investigations. The objective of the study was to evaluate associations between self-reported gastrointestinal illnesses (GII) and household-level water supply characteristics.Methods: We conducted a cross-sectional study of water quality, water supply characteristics, and GII in 906 households served by 14 small and medium-sized community water supplies in Alabamaâs underserved Black Belt region.Results: We identified associations between respondent-reported water supply interruption and any symptoms of GII (adjusted odds ratio (aOR): 3.01, 95% confidence interval (CI) = 1.65â 5.49), as well as low water pressure and any symptoms of GII (aOR: 4.51, 95% CI = 2.55â 7.97). We also identified associations between measured water quality such as lack of total chlorine and any symptoms of GII (aOR: 5.73, 95% CI = 1.09â30.1), and detection of E. coli in water samples and increased reports of vomiting (aOR: 5.01, 95% CI = 1.62â15.52) or diarrhea (aOR: 7.75, 95% CI = 2.06â29.15).Conclusions: Increased self-reported GII was associated with key water system characteristics as measured at the point of sampling in a cross-sectional study of small and medium water systems in rural Alabama in 2012 suggesting that these water supplies can contribute to endemic gastro-intestinal disease risks. Future studies should focus on further characterizing and managing microbial risks in systems facing similar challenges
- âŠ