1,337 research outputs found
Interfacial motion in flexo- and order-electric switching between nematic filled states
We consider a nematic liquid crystal, in coexistence with its isotropic
phase, in contact with a substrate patterned with rectangular grooves. In such
a system, the nematic phase may fill the grooves without the occurrence of
complete wetting. There may exist multiple (meta)stable filled states, each
characterised by the type of distortion (bend or splay) in each corner of the
groove and by the shape of the nematic-isotropic interface, and additionally
the plateaux that separate the grooves may be either dry or wet with a thin
layer of nematic. Using numerical simulations, we analyse the dynamical
response of the system to an externally- applied electric field, with the aim
of identifying switching transitions between these filled states. We find that
order-electric coupling between the fluid and the field provides a means of
switching between states where the plateaux between grooves are dry and states
where they are wet by a nematic layer, without affecting the configuration of
the nematic within the groove. We find that flexoelectric coupling may change
the nematic texture in the groove, provided that the flexoelectric coupling
differentiates between the types of distortion at the corners of the substrate.
We identify intermediate stages of the transitions, and the role played by the
motion of the nematic-isotropic interface. We determine quantitatively the
field magnitudes and orientations required to effect each type of transition.Comment: 14 pages, 12 fig
Constraining the LRG Halo Occupation Distribution using Counts-in-Cylinders
The low number density of the Sloan Digital Sky Survey (SDSS) Luminous Red
Galaxies (LRGs) suggests that LRGs occupying the same dark matter halo can be
separated from pairs occupying distinct dark matter halos with high fidelity.
We present a new technique, Counts-in-Cylinders (CiC), to constrain the
parameters of the satellite contribution to the LRG Halo-Occupation
Distribution (HOD). For a fiber collision-corrected SDSS spectroscopic LRG
subsample at 0.16 < z < 0.36, we find the CiC multiplicity function is fit by a
halo model where the average number of satellites in a halo of mass M is
= ((M - Mcut)/M1)^alpha with Mcut = 5.0 +1.5/-1.3 (+2.9/-2.6) X 10^13
Msun, M1 = 4.95 +0.37/-0.26 (+0.79/-0.53) X 10^14 Msun, and alpha = 1.035
+0.10/-0.17 (+0.24/-0.31) at the 68% and 95% confidence levels using a WMAP3
cosmology and z=0.2 halo catalog.
Our method tightly constrains the fraction of LRGs that are satellite
galaxies, 6.36 +0.38/-0.39, and the combination Mcut/10^{14} Msun + alpha =
1.53 +0.08/-0.09 at the 95% confidence level. We also find that mocks based on
a halo catalog produced by a spherical overdensity (SO) finder reproduce both
the measured CiC multiplicity function and the projected correlation function,
while mocks based on a Friends-of-Friends (FoF) halo catalog has a deficit of
close pairs at ~1 Mpc/h separations. Because the CiC method relies on higher
order statistics of close pairs, it is robust to the choice of halo finder. In
a companion paper we will apply this technique to optimize Finger-of-God (FOG)
compression to eliminate the 1-halo contribution to the LRG power spectrum.Comment: 40 pages, 9 figures, submitted to Astrophysical Journa
One-dimensional collision carts computer model and its design ideas for productive experiential learning
We develop an Easy Java Simulation (EJS) model for students to experience the
physics of idealized one-dimensional collision carts. The physics model is
described and simulated by both continuous dynamics and discrete transition
during collision. In the field of designing computer simulations, we discuss
briefly three pedagogical considerations such as 1) consistent simulation world
view with pen paper representation, 2) data table, scientific graphs and
symbolic mathematical representations for ease of data collection and multiple
representational visualizations and 3) game for simple concept testing that can
further support learning. We also suggest using physical world setup to be
augmented complimentary with simulation while highlighting three advantages of
real collision carts equipment like tacit 3D experience, random errors in
measurement and conceptual significance of conservation of momentum applied to
just before and after collision. General feedback from the students has been
relatively positive, and we hope teachers will find the simulation useful in
their own classes. 2015 Resources added:
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3),
301 (2012); ISSN 0031-912
Macrophages in the Aging Liver and Age-Related Liver Disease
The number of individuals aged 65 or older is projected to increase globally from 524 million in 2010 to nearly 1. 5 billion in 2050. Aged individuals are particularly at risk for developing chronic illness, while being less able to regenerate healthy tissue and tolerate whole organ transplantation procedures. In the liver, these age-related diseases include non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis. Hepatic macrophages, a population comprised of both Kupffer cells and infiltrating monocyte derived macrophages, are implicated in several chronic liver diseases and also play important roles in the homeostatic functions of the liver. The effects of aging on hepatic macrophage population dynamics, polarization, and function are not well understood. Studies performed on macrophages derived from other aged sources, such as the bone marrow, peritoneal cavity, lungs, and brain, demonstrate general reductions in autophagy and phagocytosis, dysfunction in cytokine signaling, and altered morphology and distribution, likely mediated by epigenetic changes and mitochondrial defects, that may be applicable to hepatic macrophages. This review highlights recent findings in macrophage developmental biology and function, particularly in the liver, and discusses the role of macrophages in various age-related liver diseases. A better understanding of the biology of aging that influences hepatic macrophages and thus the progression of chronic liver disease will be crucial in order to develop new interventions and treatments for liver disease in aging populations
Propranolol Sensitizes Vascular Sarcoma Cells to Doxorubicin by Altering Lysosomal Drug Sequestration and Drug Efflux
Angiosarcoma is a rare cancer of blood vessel–forming cells with a high patient mortality and few treatment options. Although chemotherapy often produces initial clinical responses, outcomes remain poor, largely due to the development of drug resistance. We previously identified a subset of doxorubicin-resistant cells in human angiosarcoma and canine hemangiosarcoma cell lines that exhibit high lysosomal accumulation of doxorubicin. Hydrophobic, weak base chemotherapeutics, like doxorubicin, are known to sequester within lysosomes, promoting resistance by limiting drug accessibility to cellular targets. Drug synergy between the beta adrenergic receptor (β-AR) antagonist, propranolol, and multiple chemotherapeutics has been documented in vitro, and clinical data have corroborated the increased therapeutic potential of propranolol with chemotherapy in angiosarcoma patients. Because propranolol is also a weak base and accumulates in lysosomes, we sought to determine whether propranolol enhanced doxorubicin cytotoxicity via antagonism of β-ARs or by preventing the lysosomal accumulation of doxorubicin. β-AR-like immunoreactivities were confirmed in primary tumor tissues and cell lines; receptor function was verified by monitoring downstream signaling pathways of β-ARs in response to receptor agonists and antagonists. Mechanistically, propranolol increased cytoplasmic doxorubicin concentrations in sarcoma cells by decreasing the lysosomal accumulation and cellular efflux of this chemotherapeutic agent. Equivalent concentrations of the receptor-active S-(−) and -inactive R-(+) enantiomers of propranolol produced similar effects, supporting a β-AR-independent mechanism. Long-term exposure of hemangiosarcoma cells to propranolol expanded both lysosomal size and number, yet cells remained sensitive to doxorubicin in the presence of propranolol. In contrast, removal of propranolol increased cellular resistance to doxorubicin, underscoring lysosomal doxorubicin sequestration as a key mechanism of resistance. Our results support the repurposing of the R-(+) enantiomer of propranolol with weak base chemotherapeutics to increase cytotoxicity and reduce the development of drug-resistant cell populations without the cardiovascular and other side effects associated with antagonism of β-ARs
Attention on Weak Ties in Social and Communication Networks
Granovetter's weak tie theory of social networks is built around two central
hypotheses. The first states that strong social ties carry the large majority
of interaction events; the second maintains that weak social ties, although
less active, are often relevant for the exchange of especially important
information (e.g., about potential new jobs in Granovetter's work). While
several empirical studies have provided support for the first hypothesis, the
second has been the object of far less scrutiny. A possible reason is that it
involves notions relative to the nature and importance of the information that
are hard to quantify and measure, especially in large scale studies. Here, we
search for empirical validation of both Granovetter's hypotheses. We find clear
empirical support for the first. We also provide empirical evidence and a
quantitative interpretation for the second. We show that attention, measured as
the fraction of interactions devoted to a particular social connection, is high
on weak ties --- possibly reflecting the postulated informational purposes of
such ties --- but also on very strong ties. Data from online social media and
mobile communication reveal network-dependent mixtures of these two effects on
the basis of a platform's typical usage. Our results establish a clear
relationships between attention, importance, and strength of social links, and
could lead to improved algorithms to prioritize social media content
Gravitational Waves from the Dynamical Bar Instability in a Rapidly Rotating Star
A rapidly rotating, axisymmetric star can be dynamically unstable to an m=2
"bar" mode that transforms the star from a disk shape to an elongated bar. The
fate of such a bar-shaped star is uncertain. Some previous numerical studies
indicate that the bar is short lived, lasting for only a few bar-rotation
periods, while other studies suggest that the bar is relatively long lived.
This paper contains the results of a numerical simulation of a rapidly rotating
gamma=5/3 fluid star. The simulation shows that the bar shape is long lived:
once the bar is established, the star retains this shape for more than 10
bar-rotation periods, through the end of the simulation. The results are
consistent with the conjecture that a star will retain its bar shape
indefinitely on a dynamical time scale, as long as its rotation rate exceeds
the threshold for secular bar instability. The results are described in terms
of a low density neutron star, but can be scaled to represent, for example, a
burned-out stellar core that is prevented from complete collapse by centrifugal
forces. Estimates for the gravitational-wave signal indicate that a dynamically
unstable neutron star in our galaxy can be detected easily by the first
generation of ground based gravitational-wave detectors. The signal for an
unstable neutron star in the Virgo cluster might be seen by the planned
advanced detectors. The Newtonian/quadrupole approximation is used throughout
this work.Comment: Expanded version to be published in Phys. Rev. D: 13 pages, REVTeX,
13 figures, 9 TeX input file
Macrophage phenotype in response to ECM bioscaffolds
Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ + LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers
Qatar-2: A K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit
We report the discovery and initial characterization of Qatar-2b, a hot
Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short
period, P_ b = 1.34 days. The mass and radius of Qatar-2b are M_p = 2.49 M_j
and R_p = 1.14 R_j, respectively. Radial-velocity monitoring of Qatar-2 over a
span of 153 days revealed the presence of a second companion in an outer orbit.
The Systemic Console yielded plausible orbits for the outer companion, with
periods on the order of a year and a companion mass of at least several M_j.
Thus Qatar-2 joins the short but growing list of systems with a transiting hot
Jupiter and an outer companion with a much longer period. This system
architecture is in sharp contrast to that found by Kepler for multi-transiting
systems, which are dominated by objects smaller than Neptune, usually with
tightly spaced orbits that must be nearly coplanar
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
- …