5,079 research outputs found

    Design of multi-frequency acoustic kinoforms

    Get PDF
    Complex diffraction limited acoustic fields can be generated from a single element transducer using inexpensive 3-D printable acoustic kinoforms. This is extremely promising for a number of applications. However, the lack of ability to vary the field limits the potential use of this technology. In this work, this limitation is circumvented using multi-frequency acoustic kinoforms for which different acoustic fields are encoded onto different driving frequencies. An optimisation approach based on random downhill binary search is introduced for the design of the multi-frequency kinoforms. This is applied to two test cases to demonstrate the technique: a kinoform designed to generate the numerals “1,” “2,” and “3” in the same plane but at different driving frequencies, and a kinoform designed to generate 3 sets of eight foci lying on a circle with a driving-frequency-dependent radius. Field measurements from these samples confirmed that multi-frequency acoustic kinoforms can be designed that switch between different arbitrary, pre-designed, acoustic field patterns in the target plane by changing the driving frequenc

    Stackable acoustic holograms

    Get PDF
    Acoustic holograms can be used to form complex distributions of pressure in 3D at MHz frequencies from simple inexpensive ultrasound sources. The generation of such fields is vital to a diverse range of applications in physical acoustics. However, at present, the application of acoustic holograms is severely hindered by the static nature of the resulting fields. In this work, it is shown that by intentionally reducing the diffraction efficiency of each hologram, it is possible to create stackable acoustic holograms that can be repositioned to reconfigure the combined acoustic field. An experimental test-case consisting of two holograms, each designed to generate a distinct distribution of acoustic foci, is used to demonstrate the feasibility of this approach. Field scans taken for four different positions of the two holograms confirm that the individual patterns for each hologram can be arbitrary translated relative to one another. This allows for the generation of a much greater range of fields from a single transducer than could be created using a single hologram

    Binary Volume Acoustic Holograms

    Get PDF
    In recent years, high-resolution additive manufacturing has enabled a diverse range of low-cost methods for ultrasonic wave-front shaping. Acoustic holograms, in particular, allow for the generation of arbitrary diffraction-limited acoustic fields at megahertz frequencies from single-element transducers. These are phase plates that function as direct acoustic analogs to thin optical holograms. In this work, it is shown that, by using multiple polymer three-dimensional (3D) printing, two-material (binary) acoustic analogs to "thick"or volume optical holograms can also be generated. First, an analytic approach for designing a volume hologram that diffracts a set of input fields onto a desired set of output fields is briefly summarized. Next, a greedy-optimization approach based on random downhill binary search able to account for the constraints imposed by the chosen fabrication method is introduced. Finally, an experimental test case designed to diffract the field generated by a 2.54-cm planar lead zirconate titanate (PZT) transducer onto eight distinct patterns dependent on the direction of the incident field is used to validate the approach and the design method. Field scans of the eight target fields demonstrate that acoustic analogs of optical volume holograms can be generated using multipolymer printing and that these allow the multiplexing of distinct fields onto different incident field directions

    Single Pulse Illumination of Multi-Layer Photoacoustic Holograms for Patterned Ultrasound Field Generation

    Get PDF
    A new method for the creation of patterned, focused, optically generated acoustic fields using a single optical pulse is introduced. This utilises multi-layer `holograms' composed of several spatially separate absorbing layers. Each layer is individually patterned so as to focus at a set of targeted points. To create the patterns, a ray-tracing model was implemented to calculate the impulse response of pixels within each absorbing layer to a set of targeted points. An optimisation approach was then used to find the optimal pattern for each layer to create a field evenly focused at each of the target points. The method was validated using both numerical simulations and acoustic field measurements. It was demonstrated that a 3×3 array of acoustic foci could be generated from a 3-layer hologram using a single laser pulse

    Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles

    Get PDF
    Acoustic fields with multiple foci have many applications in physical acoustics ranging from particle manipulation to neural modulation. However, the generation of multiple foci at arbitrary locations in three-dimensional is challenging using conventional transducer technology. In this work, the optical generation of acoustic fields focused at multiple points using a single optical pulse is demonstrated. This is achieved using optically absorbing surface profiles designed to generate specific, user-defined, wavefields. An optimisation approach for the design of these tailored surface profiles is developed. This searches for a smoothly varying surface that will generate a high peak pressure at a set of target focal points. The designed surface profiles are then realised via a combination of additive manufacturing and absorber deposition techniques. Acoustic field measurements from a sample designed to generate the numeral “7” are used to demonstrate the design method

    Control of broadband optically generated ultrasound pulses using binary amplitude holograms

    Get PDF
    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser

    Preliminary evaluation of a variable compliance joystick for people with multiple sclerosis

    Get PDF
    Upper-limb fatigue is a common problem that may restrict people with multiple sclerosis (MS) from using their electric powered wheelchair effectively and for a long period of time. The objective of this research is to evaluate whether participants with MS can drive better with a variable compliance joystick (VCJ) and customizable algorithms than with a conventional wheelchair joystick. Eleven participants were randomly assigned to one of two groups. The groups used the VCJ in either compliant or noncompliant isometric mode and a standard algorithm, personally fitted algorithm, or personally fitted algorithm with fatigue adaptation running in the background in order to complete virtual wheelchair driving tasks. Participants with MS showed better driving performance metrics while using the customized algorithms than while using the standard algorithm with the VCJ. Fatigue adaptation algorithms are especially beneficial in improving overall task performance while using the VCJ in isometric mode. The VCJ, along with the personally fitted algorithms and fatigue adaptation algorithms, has the potential to be an effective input interface for wheelchairs

    Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins

    Full text link
    Aims/hypothesis: Previous studies have shown that glycation of LDL by methylglyoxal and glycolaldehyde, in the absence of significant oxidation, results in lipid accumulation in macrophage cells. Such 'foam cells' are a hallmark of atherosclerosis. In this study we examined whether LDL glycation by methylglyoxal or glycolaldehyde, and subsequent lipid loading of cells, can be inhibited by agents that scavenge reactive carbonyls. Such compounds may have therapeutic potential in diabetes-associated atherosclerosis. Materials and methods: LDL was glycated with methylglyoxal or glycolaldehyde in the absence or presence of metformin, aminoguanidine, Girard's reagents P and T, or hydralazine. LDL modification was characterised by changes in mobility (agarose gel electrophoresis), cross-linking (SDS-PAGE) and loss of amino acid residues (HPLC). Accumulation of cholesterol and cholesteryl esters in murine macrophages was assessed by HPLC. Results: Inhibition of LDL glycation was detected with equimolar or greater concentrations of the scavengers over the reactive carbonyl. This inhibition was structure-dependent and accompanied by a modulation of cholesterol and cholesteryl ester accumulation. With aminoguanidine, Girard's reagent P and hydralazine, cellular sterol levels returned to control levels despite incomplete inhibition of LDL modification. Conclusions/ interpretation: Inhibition of LDL glycation by interception of the reactive aldehydes that induce LDL modification prevents lipid loading and model foam cell formation in murine macrophage cells. Carbonyl-scavenging reagents, such as hydrazines, may therefore help inhibit LDL glycation in vivo and prevent diabetes-induced atherosclerosis. © Springer-Verlag 2006

    Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz

    Get PDF
    Over the past decade, the range of applications in biomedical ultrasound exploiting 3D printing has rapidly expanded. For wavefront shaping specifically, 3D printing has enabled a diverse range of new, low-cost approaches for controlling acoustic fields. These methods rely on accurate knowledge of the bulk acoustic properties of the materials; however, to date, robust knowledge of these parameters is lacking for many materials that are commonly used. In this work, the acoustic properties of eight 3D-printed photopolymer materials were characterised over a frequency range from 1 to 3.5 MHz. The properties measured were the frequency-dependent phase velocity and attenuation, group velocity, signal velocity, and mass density. The materials were fabricated using two separate techniques [PolyJet and stereolithograph (SLA)], and included Agilus30, FLXA9960, FLXA9995, Formlabs Clear, RGDA8625, RGDA8630, VeroClear, and VeroWhite. The range of measured density values across all eight materials was 1120–1180 kg · m−3, while the sound speed values were between 2020 to 2630 m · s−1, and attenuation values typically in the range 3–9 dB · MHz−1· cm−1
    corecore