5,667 research outputs found

    The chiral symplectic universality class

    Full text link
    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.Comment: accepted in Proceedings of Localisation 2002 Conference, Tokyo, Japan (to be published as supplement of J. Phys. Soc. Japan

    Fano resonances as a probe of phase coherence in quantum dots

    Full text link
    In the presence of direct trajectories connecting source and drain contacts, the conductance of a quantum dot may exhibit resonances of the Fano type. Since Fano resonances result from the interference of two transmission pathways, their lineshape (as described by the Fano parameter q) is sensitive to dephasing in the quantum dot. We show that under certain circumstances the dephasing time can be extracted from a measurement of q for a single resonance. We also show that q fluctuates from level to level, and calculate its probability distribution for a chaotic quantum dot. Our results are relevant to recent experiments by Goeres et al.Comment: 4 pages, 3 figures; published versio

    Rectification of displacement currents in an adiabatic electron pump

    Full text link
    Rectification of ac displacement currents generated by periodic variation of two independent gate voltages of a quantum dot can lead to a dc voltage linear in the frequency. The presence of this rectified displacement current could account for the magnetic field symmetry observed in a recent measurement on an adiabatic quantum electron pump by Switkes et al. [Science 283, 1905 (1999)].Comment: 2 pages, RevTeX; 1 figur

    Fluctuating "order parameter" for a quantum chaotic system with partially broken time-reversal symmetry

    Full text link
    The functional defined as the squared modulus of the spatial average of the wave function squared, plays the role of an ``order parameter'' for the transition between Hamiltonian ensembles with orthogonal and unitary symmetry. Upon breaking time-reversal symmetry, the order parameter crosses over from one to zero. We compute its distribution in the crossover regime and find that it has large fluctuations around the ensemble average. These fluctuations imply long-range spatial correlations in the eigenfunction and non-Gaussian perturbations of eigenvalues, in precise agreement with results by Fal'ko and Efetov and by Taniguchi, Hashimoto, Simons, and Altshuler. As a third implication of the order-parameter fluctuations we find correlations in the response of an eigenvalue to independent perturbations of the system.Comment: 4 pages, REVTeX-3.0, 1 figure. Reference added to Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B 51, 13403 (1995

    A spin pump turnstile: parametric pumping of a spin-polarized current through a nearly-closed quantum dot

    Full text link
    We investigate parametric pumping of a spin-polarized current through a nearly-closed quantum dot in a perpendicular magnetic field. Pumping is achieved by tuning the tunnel couplings to the left and right lead - thereby operating the quantum dot as a turnstile - and changing either the magnetic field or a gate-voltage. We analyze the quantum dynamics of a pumping cycle and the limiting time scales for operating the quantum dot turnstile as a pure spin pump. The proposed device can be used as a fully controllable double-sided and bipolar spin filter and to inject spins "on demand".Comment: 5 pages, 2 figures, one reference correcte
    • …
    corecore