37 research outputs found

    Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces.

    Get PDF
    Platelet interaction with collagens, via von Willebrand factor, is a potent trigger of shear-dependent thrombus formation mediated by subsequent engagement of the signaling collagen receptor glycoprotein (GP)VI, enforced by integrin α2β1. Protein tyrosine kinase Syk is central in the GPVI-induced signaling pathway, leading to elevated cytosolic Ca2+. We aimed to determine the Syk-mediated thrombogenic activity of several collagen peptides and (fibrillar) type I and III collagens. High-shear perfusion of blood over microspots of these substances resulted in thrombus formation, which was assessed by eight parameters and was indicative of platelet adhesion, activation, aggregation, and contraction, which were affected by the Syk inhibitor PRT-060318. In platelet suspensions, only collagen peptides containing the consensus GPVI-activating sequence (GPO)n and Horm-type collagen evoked Syk-dependent Ca2+ rises. In whole blood under flow, Syk inhibition suppressed platelet activation and aggregation parameters for the collagen peptides with or without a (GPO)n sequence and for all of the collagens. Prediction models based on a regression analysis indicated a mixed role of GPVI in thrombus formation on fibrillar collagens, which was abolished by Syk inhibition. Together, these findings indicate that GPVI-dependent signaling through Syk supports platelet activation in thrombus formation on collagen-like structures regardless of the presence of a (GPO)n sequence

    High-throughput elucidation of thrombus formation reveals sources of platelet function variability.

    Get PDF
    In combination with microspotting, whole-blood microfluidics can provide high-throughput information on multiple platelet functions in thrombus formation. Based on assessment of the inter- and intra-subject variability in parameters of microspot-based thrombus formation, we aimed to determine the platelet factors contributing to this variation. Blood samples from 94 genotyped healthy subjects were analyzed for conventional platelet phenotyping: i.e. hematologic parameters, platelet glycoprotein (GP) expression levels and activation markers (24 parameters). Furthermore, platelets were activated by ADP, CRP-XL or TRAP. Parallel samples were investigated for whole-blood thrombus formation (6 microspots, providing 48 parameters of adhesion, aggregation and activation). Microspots triggered platelet activation through GP Ib-V-IX, GPVI, CLEC-2 and integrins. For most thrombus parameters, inter-subject variation was 2-4 times higher than the intra-subject variation. Principal component analyses indicated coherence between the majority of parameters for the GPVI-dependent microspots, partly linked to hematologic parameters, and glycoprotein expression levels. Prediction models identified parameters per microspot that were linked to variation in agonist-induced αIIbβ3 activation and secretion. Common sequence variation of GP6 and FCER1G, associated with GPVI-induced αIIbβ3 activation and secretion, affected parameters of GPVI-and CLEC-2-dependent thrombus formation. Subsequent analysis of blood samples from patients with Glanzmann thrombasthenia or storage pool disease revealed thrombus signatures of aggregation-dependent parameters that were subject-dependent, but not linked to GPVI activity. Taken together, this high-throughput elucidation of thrombus formation revealed patterns of inter-subject differences in platelet function, which were partly related to GPVI-induced activation and common genetic variance linked to GPVI, but also included a distinct platelet aggregation component

    Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation

    Get PDF
    Abstract: In haemostasis and thrombosis, platelet, coagulation and anticoagulation pathways act together to produce fibrin-containing thrombi. We developed a microspot-based technique, in which we assessed platelet adhesion, platelet activation, thrombus structure and fibrin clot formation in real time using flowing whole blood. Microspots were made from distinct platelet-adhesive surfaces in the absence or presence of tissue factor, thrombomodulin or activated protein C. Kinetics of platelet activation, thrombus structure and fibrin formation were assessed by fluorescence microscopy. This work revealed: (1) a priming role of platelet adhesion in thrombus contraction and subsequent fibrin formation; (2) a surface-independent role of tissue factor, independent of the shear rate; (3) a mechanism of tissue factor-enhanced activation of the intrinsic coagulation pathway; (4) a local, suppressive role of the anticoagulant thrombomodulin/protein C pathway under flow. Multiparameter analysis using blood samples from patients with (anti)coagulation disorders indicated characteristic defects in thrombus formation, in cases of factor V, XI or XII deficiency; and in contrast, thrombogenic effects in patients with factor V-Leiden. Taken together, this integrative phenotyping approach of platelet–fibrin thrombus formation has revealed interaction mechanisms of platelet-primed key haemostatic pathways with alterations in patients with (anti)coagulation defects. It can help as an important functional add-on whole-blood phenotyping

    Design, manufacturing and testing of a green non-isocyanate polyurethane prosthetic heart valve.

    Full text link
    peer reviewedThe sole effective treatment for most patients with heart valve disease is valve replacement by implantation of mechanical or biological prostheses. However, mechanical valves represent high risk of thromboembolism, and biological prostheses are prone to early degeneration. In this work, we aim to determine the potential of novel environmentally-friendly non-isocyanate polyurethanes (NIPUs) for manufacturing synthetic prosthetic heart valves. Polyhydroxyurethane (PHU) NIPUs are synthesized via an isocyanate-free route, tested in vitro, and used to produce aortic valves. PHU elastomers reinforced with a polyester mesh show mechanical properties similar to native valve leaflets. These NIPUs do not cause hemolysis. Interestingly, both platelet adhesion and contact activation-induced coagulation are strongly reduced on NIPU surfaces, indicating low thrombogenicity. Fibroblasts and endothelial cells maintain normal growth and shape after indirect contact with NIPUs. Fluid-structure interaction (FSI) allows modeling of the ideal valve design, with minimal shear stress on the leaflets. Injection-molded valves are tested in a pulse duplicator and show ISO-compliant hydrodynamic performance, comparable to clinically-used bioprostheses. Poly(tetrahydrofuran) (PTHF)-NIPU patches do not show any evidence of calcification over a period of 8 weeks. NIPUs are promising sustainable biomaterials for the manufacturing of improved prosthetic valves with low thrombogenicity

    High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond

    No full text
    In recent years, considerable progress has been made in understanding the mechanisms involved in platelet activation during hemostasis and thrombosis. Parallel-plate flow chambers and other microfluidic devices have markedly contributed to this insight. Conversely, such flow devices are now increasingly used to monitor the combined processes of platelet aggregation, thrombus formation, and coagulation in human blood. Currently, by combining microspotting and multi-color fluorescence microscopy, this technology offers the capability of high-throughput measurement of platelet activation processes, even in small blood samples. Here we review the potential of flow chamber devices for complex (multiparameter) platelet and coagulation phenotyping, focusing on patients with (genetic) platelet- or coagulation-based bleeding disorders as well as monitoring of antithrombotic medication. Animal studies are not discussed

    Whole Blood Based Multiparameter Assessment of Thrombus Formation in Standard Microfluidic Devices to Proxy In Vivo Haemostasis and Thrombosis

    No full text
    Microfluidic assays are versatile tests which, using only small amounts of blood, enable high throughput analyses of platelet function in several minutes. In combination with fluorescence microscopy, these flow tests allow real-time visualisation of platelet activation with the possibility of examining combinatorial effects of wall shear rate, coagulation and modulation by endothelial cells. In particular, the ability to use blood and blood cells from healthy subjects or patients makes this technology promising, both for research and (pre)clinical diagnostic purposes. In the present review, we describe how microfluidic devices are used to assess the roles of platelets in thrombosis and haemostasis. We place emphasis on technical aspects and on experimental designs that make the concept of "blood-vessel-component-on-a-chip" an attractive, rapidly developing technology for the study of the complex biological processes of blood coagulability in the presence of flow

    Enrichment of tight junction-like structures at sites of platelet-platelet contact

    No full text
    Background: In tissues, cell-cell adhesion, barrier formation and communication are regulated by junction proteins. Interestingly, platelets express several of these proteins too. Previously, research has shown that gap junction proteins expressed by platelets form gap junctions within platelet thrombi that are necessary to control the contraction of the clots. Also, platelet activation processes are negatively regulated by endothelial cell-selective adhesion molecule (ESAM) and junctional adhesion molecule A (JAM-A), proteins that are part of the tight junctions (TJ) of endothelial cells. However, how other components of TJs -like zonula occludens 2 (ZO-2)- concentrate at platelet-platelet contacts and influence these, has not yet been described. Methods: Using transcriptomics and (phospho)proteomics databases, the expression and regulation upon platelet activation or inhibition of known tight junction proteins in platelets was investigated. Isolated human platelets were allowed to fully spread on a fibrinogen or laminin surface and were additionally activated by stimulating P2Y12, PAR1 or GPVI signaling. Fixed samples were stained to assess F-actin polymerization in relation to CD61, ZO-2 and ESAM distribution using confocal and/or super-resolution fluorescence microscopy. Platinum replica electron microscopy was applied for ultrastructural visualization of the cytoskeleton at sites of platelet-platelet interaction. Results: Confocal and super-resolution fluorescence microscopy indicated a marked redistribution and clustering of ZO-2 molecules at sites of platelet-platelet contacts, in which the colocalization of ZO-2 and ESAM was enhanced when platelets were additionally activated. Furthermore, platinum replica electron microscopy revealed that inter-platelet contacts resulted in the merging of the circumferential actin bundles between interacting platelets. These phenomena were antagonized by cAMP elevation. Conclusion: Jointly, these data point to the assembly of tight junction-like structures, where intra- and extracellular components of tight junctions accumulate at sites of close platelet-platelet contac
    corecore