15 research outputs found

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Self-assembly of LiMo3Se3 nanowire networks from nanoscale building-blocks in solution.

    No full text
    LiMo(3)Se(3) is a highly anisotropic solid comprised of a regular pattern of quasi-1-D wire-like structures. Solutions of LiMo(3)Se(3) deposited on substrates and TEM grids reveal the presence of two-dimensional network morphologies. High resolution STEM imaging reveals that the junctions within these networks are not formed by discrete overlying LiMo(3)Se(3) fibers or wires. Rather the junctions are continuous in that the wires are seamlessly interwoven from one bundle to the next. We investigated network formation by dynamic light scattering and AFM and demonstrate that the networks are not pre-existent in solution but rather form via self-assembly of nanoscale building blocks that is driven by solvent evaporation

    The effects of season and management on the growth of grass swards

    No full text
    corecore