336 research outputs found
A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes
We describe a finite-volume method for solving the Poisson equation on
oct-tree adaptive meshes using direct solvers for individual mesh blocks. The
method is a modified version of the method presented by Huang and Greengard
(2000), which works with finite-difference meshes and does not allow for shared
boundaries between refined patches. Our algorithm is implemented within the
FLASH code framework and makes use of the PARAMESH library, permitting
efficient use of parallel computers. We describe the algorithm and present test
results that demonstrate its accuracy.Comment: 10 pages, 6 figures, accepted by the Astrophysical Journal; minor
revisions in response to referee's comments; added char
Instabilities and stickiness in a 3D rotating galactic potential
We study the dynamics in the neighborhood of simple and double unstable
periodic orbits in a rotating 3D autonomous Hamiltonian system of galactic
type. In order to visualize the four dimensional spaces of section we use the
method of color and rotation. We investigate the structure of the invariant
manifolds that we found in the neighborhood of simple and double unstable
periodic orbits in the 4D spaces of section. We consider orbits in the
neighborhood of the families x1v2, belonging to the x1 tree, and the z-axis
(the rotational axis of our system). Close to the transition points from
stability to simple instability, in the neighborhood of the bifurcated simple
unstable x1v2 periodic orbits we encounter the phenomenon of stickiness as the
asymptotic curves of the unstable manifold surround regions of the phase space
occupied by rotational tori existing in the region. For larger energies, away
from the bifurcating point, the consequents of the chaotic orbits form clouds
of points with mixing of color in their 4D representations. In the case of
double instability, close to x1v2 orbits, we find clouds of points in the four
dimensional spaces of section. However, in some cases of double unstable
periodic orbits belonging to the z-axis family we can visualize the associated
unstable eigensurface. Chaotic orbits close to the periodic orbit remain sticky
to this surface for long times (of the order of a Hubble time or more). Among
the orbits we studied we found those close to the double unstable orbits of the
x1v2 family having the largest diffusion speed.Comment: 29pages, 25 figures, accepted for publication in the International
Journal of Bifurcation and Chao
A new regional climate model for POLAR-CORDEX : evaluation of a 30-year hindcast with COSMO-CLM2 over Antarctica
Continent-wide climate information over the Antarctic Ice Sheet (AIS) is important to obtain accurate information of present climate and reduce uncertainties of the ice sheet mass balance response and resulting global sea level rise to future climate change. In this study, the COSMO-CLM2 Regional Climate Model is applied over the AIS and adapted for the specific meteorological and climatological conditions of the region. A 30-year hindcast was performed and evaluated against observational records consisting of long-term ground-based meteorological observations, automatic weather stations, radiosoundings, satellite records, stake measurements and ice cores. Reasonable agreement regarding the surface and upper-air climate is achieved by the COSMO-CLM2 model, comparable to the performance of other state-of-the-art climate models over the AIS. Meteorological variability of the surface climate is adequately simulated, and biases in the radiation and surface mass balance are small. The presented model therefore contributes as a new member to the COordinated Regional Downscaling EXperiment project over the AIS (POLAR-CORDEX) and the CORDEX-CORE initiative
A recursive paradigm for aligning observed behavior of large structured process models
The alignment of observed and modeled behavior is a crucial problem in process mining, since it opens the door for conformance checking and enhancement of process models. The state of the art techniques for the computation of alignments rely on a full exploration of the combination of the model state space and the observed behavior (an event log), which hampers their applicability for large instances. This paper presents a fresh view to the alignment problem: the computation of alignments is casted as the resolution of Integer Linear Programming models, where the user can decide the granularity of the alignment steps. Moreover, a novel recursive strategy is used to split
the problem into small pieces, exponentially reducing the complexity of the ILP models to be solved. The contributions of this paper represent a promising alternative to fight the inherent complexity of computing alignments for large instances.Peer ReviewedPostprint (author's final draft
Unfolding-Based Process Discovery
This paper presents a novel technique for process discovery. In contrast to
the current trend, which only considers an event log for discovering a process
model, we assume two additional inputs: an independence relation on the set of
logged activities, and a collection of negative traces. After deriving an
intermediate net unfolding from them, we perform a controlled folding giving
rise to a Petri net which contains both the input log and all
independence-equivalent traces arising from it. Remarkably, the derived Petri
net cannot execute any trace from the negative collection. The entire chain of
transformations is fully automated. A tool has been developed and experimental
results are provided that witness the significance of the contribution of this
paper.Comment: This is the unabridged version of a paper with the same title
appearead at the proceedings of ATVA 201
Evaluation of the impact of pre-treatment and extraction conditions on the polyphenolic profile and antioxidant activity of Belgium apple wood
This study describes the possibilities of valorising a waste stream that originates from apple wood by mapping the reducing capacity and phenolic profile from extracts derived from apple tree (Malus domestica). This study evaluated the efficiency of warm solvent extraction (WSE) and ultrasound-assisted extraction (UAE) techniques for extracting antioxidant phenolic compounds from the bark and core wood of an apple tree cultivated in the north-eastern part of Belgium. Furthermore, the influence of the pre-treatment technique, namely, fresh, oven-dried, and freeze-dried samples, respectively, on the yield of polyphenols was studied. Fresh bark extract obtained by UAE—the most efficient extraction technique—employing acetone 60% v/v contains the highest levels of phenolic compounds as well as the highest antioxidant activity. High-performance liquid chromatographic analysis shows that phloridzin is the major compound of the identified polyphenol markers present in bark and core wood extracts. Based on the obtained results, it may be possible to produce a polyphenolic extract from apple wood at an industrial scale without extensive costs or altering the antioxidant properties. This study reveals the potential of apple tree wood residues valorisation through the recovery of phenolic compounds for food, pharmaceutical, and cosmetic applications.Annick Boeykens is a beneficiary of a PWO (‘Projectmatig Wetenschappelijk Onderzoek’) Grant, provided to Odisee by the Flem-ish Government, for the investigation project ‘Phenolic compounds in by-products’. Manuela M. Moreira (SFRH/BPD/97049/2013) wishes to acknowledge Fundo Social Europeu and Ministério da Ciência, Tecnologia e Ensino Superior for funding her postdoctoral fellowship by means of a POPH-QREN—Tipologia 4.1—Formação Avançada. The financial support from FCT/MEC through national funds and cofi-nanced by FEDER, under the Partnership Agreement PT2020 through the project UID/QUI/50006/2013—POCI/01/0145/FEDER/007265 and the project 6818—Transnational Cooperation, Agreement between Por-tugal (FCT) and Serbia (MSTD) are also acknowledged.info:eu-repo/semantics/publishedVersio
Rubber Impact on 3D Textile Composites
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools
A uniform treatment of the orbital effects due to a violation of the Strong Equivalence Principle in the gravitational Stark-like limit
We analytically work out several effects which a violation of the Strong
Equivalence Principle (SEP) induces on the orbital motion of a binary system
constituted of self-gravitating bodies immersed in a constant and uniform
external field. We do not restrict to the small eccentricity limit. Moreover,
we do not select any specific spatial orientation of the external polarizing
field. We explicitly calculate the SEP-induced mean rates of change of all the
osculating Keplerian orbital elements of the binary, the perturbation of the
projection of the binary orbit onto the line-of-sight, the shift of the radial
velocity, and the range and range-rate signatures and as well. We find that the
ratio of the SEP precessions of the node and the inclination of the binary
depends only on and the pericenter of the binary itself, being independent on
both the magnitude and the orientation of the polarizing field, and on the
semimajor axis, the eccentricity and the node of the binary. Our results, which
do not depend on any particular SEP-violating theoretical scheme, can be
applied to quite general astronomical and astrophysical scenarios. They can be
used to better interpret present and future SEP experiments, especially when
several theoretical SEP mechanisms may be involved, and to suitably design new
dedicated tests.Comment: LaTex2e, 14 pages, no figures, no tables, 42 references. To appear in
Classical and Quantum Gravity (CQG
Technical assistance in the field of risk communication
This report assesses peer-reviewed and grey literature on risk communication concepts and practices, as requested by the European Commission to support the implementation of a ‘General Plan for Risk Communication’, i.e. an integrated framework for EU food safety risk assessors and risk managers at Union and national level, as required by the revised EU General Food Law Regulation. We conducted a scoping review of social research studies and official reports in relation to risk communication in the following areas: understanding and awareness of risk analysis roles and tasks, reducing misunderstanding of the different meaning of the terms ‘hazard’ and ‘risk’, tackling misinformation and disinformation, enhancing confidence in EU food safety, taking account of risk perceptions, key factors in trade-offs about risks, audience segmentation and tools, channels and mechanisms for coordinated risk communications. We structured our findings as follows: i) definitions of key concepts, ii) audience analysis and information requirements, iii) risk profiling, models and mechanisms, iv) contributions to communication strategies. We make several recommendations for consideration by the Commission, both in terms of actions to support the design and implementation of the general plan, and research needs that we consider crucial to further inform appropriate risk communication in the EU. EFSA carried out a targeted consultation of experts and a public consultation open to all interested parties including the general public, in preparing and finalising this report
Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage
This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced orbits are considered. Continuation methods are described and used to generate families of these orbits. Starting from ballistic orbits, other families are created either by increasing the sail lightness number, varying the period or changing the sail attitude. Some representative orbits are then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability analysis is also performed, revealing that the orbits are unstable: it is found that for particular orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly from low Earth orbit
- …