4 research outputs found

    Angular Distribution of Rotons Generated by Alpha Particles in Superfluid Helium: A Possible Tool for Low Energy Particle Detection

    Get PDF
    We report measurements of the distribution of rotons generated by α particles interacting in a bath of superfluid helium. The roton flux is found to be anisotropic; it is about 4 times larger transverse to the track direction than along it. This asymmetry may provide a powerful tool in particle and astrophysics experiments where sensitivity to low energy recoil track direction is important

    Phonon amplification using evaporation and adsorption of helium

    Get PDF
    We report the results of experiments designed to investigate the feasibility of amplifying a phonon signal using the evaporation of helium from a superfluid film and its subsequent readsorption onto a helium-free surface. We envision a multistage amplifier in which helium is evaporated from a wafer with a helium film only on one side and then adsorbed onto the film-free surface of a similar wafer. The phonons created by the adsorption reach the film on the opposite side of the wafer and potentially desorb more helium than was evaporated by the first wafer. The amplification would come from the high ratio of the binding energy of a helium atom to a film-free surface relative to the binding energy to the liquid. A number of experiments are reported that investigate the efficiencies of the individual steps of the process. The gain per stage is found to be about 3 for high-energy densities in which multiphonon processes are possible. At low-energy densities, the energy deposited into a film-free wafer is found to be less than the original input energy, with the ratio of output to input energy 0.2. Since in applications requiring amplification the phonon density produced by the adsorption of helium on a wafer will be low, the configuration we have studied—phonons produced in silicon coated with a saturated He4 film—will not result in amplification. However, other configurations might improve the efficiency enough to make an amplifier possible

    Mechanically controlled tunneling of a single atomic defect

    No full text
    This letter reports experiments on the conductance of mesoscopic Bi films which are polycrystalline and contain single atomic two-level tunneling systems. These defects act as electron scattering centers and give rise to random telegraph signals in the conductance. External strain, applied to the samples at low temperatures, changes the asymmetry energy of the double-well potential of the tunneling particle and thus controls its average dwell time in either well. The measurements allow to determine in a direct way the deformation potential of a particular tunneling defect
    corecore