536 research outputs found

    Spin and orbital frustration in MnSc_2S_4 and FeSc_2S_4

    Full text link
    Crystal structure, magnetic susceptibility, and specific heat were measured in the normal cubic spinel compounds MnSc_2S_4 and FeSc_2S_4. Down to the lowest temperatures, both compounds remain cubic and reveal strong magnetic frustration. Specifically the Fe compound is characterized by a Curie-Weiss temperature \Theta_{CW}= -45 K and does not show any indications of order down to 50 mK. In addition, the Jahn-Teller ion Fe^{2+} is orbitally frustrated. Hence, FeSc_2S_4 belongs to the rare class of spin-orbital liquids. MnSc_2S_4 is a spin liquid for temperatures T > T_N \approx 2 K.Comment: 4 pages, to be published in Physical Review Letter

    Magnetic-field-induced superconductivity in layered organic molecular crystals with localized magnetic moments

    Full text link
    The synthetic organic compound lambda-(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe(3+) magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe(3+) ions are replaced by non-magnetic Ga(3+) ions. We show how He can be extracted from the observed splitting of the Shubnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials.Comment: 5 page

    Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield

    No full text
    Colloidal quantum dots (QDs) have emerged as promising color conversion light emitters for solid-state lighting applications [Nat. Photonics 7, 13 (2012) [CrossRef] due to their emission tunability and near-unity photoluminescence quantum yields. In the current commercial LEDs, QDs are dispersed into an encapsulation layer in a far-field architecture, where the majority of the light emitted by the LED remains trapped within the epitaxy due to total internal reflection, drastically reducing the out-coupling efficiency. In this paper, we demonstrate a photonic quasi-crystal hybrid LED geometry that allows QD emitters to be placed in close proximity to the multiple quantum wells (MQWs) of the active area. This architecture greatly improves the coupling between MQWs and QDs, simultaneously allowing for a non-radiative resonant energy transfer between the MQWs and the QDs and near-field radiative coupling of trapped (guided) modes in the LED to the emitters. In this configuration, we demonstrate record-breaking effective quantum yields reaching 123% for single-color conversion LEDs and 110% for white light-emitting devices

    Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors

    Full text link
    Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations and both intrachain and interchain repulsive interactions. d-wave superconductivity, which dominates over the spin-density-wave (SDW) phase at large nesting deviations, becomes unstable to the benefit of a triplet ff-wave phase for a weak repulsive interchain backscattering term g1⊥>0g_1^\perp>0, despite the persistence of dominant SDW correlations in the normal state. Antiferromagnetism becomes unstable against the formation of a charge-density-wave state when g1⊥g_1^\perp exceeds some critical value. While these features persist when both Umklapp processes and interchain forward scattering (g2⊥g_2^\perp) are taken into account, the effect of g2⊥g_2^\perp alone is found to frustrate nearest-neighbor interchain dd- and ff-wave pairing and instead favor next-nearest-neighbor interchain singlet or triplet pairing. We argue that the close proximity of SDW and charge-density-wave phases, singlet d-wave and triplet ff-wave superconducting phases in the theoretical phase diagram provides a possible explanation for recent puzzling experimental findings in the Bechgaard salts, including the coexistence of SDW and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.Comment: 19 pages, 13 figure

    On the exchange of intersection and supremum of sigma-fields in filtering theory

    Full text link
    We construct a stationary Markov process with trivial tail sigma-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page

    Superconductivity in an organic insulator at very high magnetic fields

    Full text link
    We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ\lambda-(BETS)2_2FeCl4_4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field {\em compensates} the exchange field of aligned Fe3+^{3+} ions. We further argue that the Fe3+^{3+} moments are essential to stabilize the resulting singlet, two-dimensional superconducting stateComment: 9 pages 3 figure

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns

    PHIL Accelerator at LAL - Diagnostic status

    No full text
    http://accelconf.web.cern.ch/AccelConf/BIW2010/papers/tupsm100.pdfInternational audienceThe "Photo-Injector at LAL" (PHIL : http://phil.lal.in2p3.fr/) is a new electron beam accelerator at LAL. This accelerator is dedicated to test and characterise electron photo-guns and high-frequency structures for future accelerator projects (like the next generation lepton colliders, CLIC, ILC). This machine has been designed to produce low energy (E<10 MeV), small emittance (epsilon < 10 pi.mm.mrad), high current (charge 2 nC/bunch) electrons bunch at low repetition frequency (frep<10Hz) [1]. The first beam has been obtained on the 4th of November 2009. This paper will describe the current status and the futures developments of the diagnostics devices on this machine

    Low Energy Beam Measurements Using PHIL Accelerator at LAL, Comparison with PARMELA Simulations

    No full text
    http://accelconf.web.cern.ch/AccelConf/PAC2011/papers/wep210.pdfInternational audiencePHIL ("PHo­to-In­jec­tor at LAL") is a new elec­tron beam ac­cel­er­a­tor at LAL. This ac­cel­er­a­tor is ded­i­cat­ed to test and char­ac­ter­ize elec­tron RF-guns and to de­liv­er elec­tron beam to users. This ma­chine has been de­signed to pro­duce and char­ac­terise low en­er­gy (E<10 MeV), small emit­tance (e<10 p.​mm.​mrad), high bril­liance elec­trons bunch at low rep­e­ti­tion fre­quen­cy (n<10Hz). The first beam has been ob­tained on the 4th of Novem­ber 2009. The cur­rent RF-gun test­ed on PHIL is the Al­phaX gun, a 2.5 cell S-band cav­i­ty de­signed by LAL for the plas­ma ac­cel­er­a­tor stud­ies per­formed at the Strath­clyde uni­ver­si­ty. This paper will pre­sent the first Al­phaX RF-gun char­ac­ter­i­za­tions per­formed at LAL on PHIL ac­cel­er­a­tor, and will show com­par­isons be­tween mea­sure­ments and PARMELA sim­u­la­tions
    • …
    corecore