49 research outputs found

    Insulin Resistance and High Blood Pressure: Mechanistic Insight on the Role of the Kidney

    Get PDF
    The metabolic effects of insulin predominate in skeletal muscle, fat, and liver where the hormone binds to its receptor, thereby priming a series of cell-specific and biochemically diverse intracellular mechanisms. In the presence of a good secretory reserve in the pancreatic islets, a decrease in insulin sensitivity in the metabolic target tissues leads to compensatory hyperinsulinemia. A large body of evidence obtained in clinical and experimental studies indicates that insulin resistance and the related hyperinsulinemia are causally involved in some forms of arterial hypertension. Much of this involvement can be ascribed to the impact of insulin on renal sodium transport, although additional mechanisms might be involved. Solid evidence indicates that insulin causes sodium and water retention, and both endogenous and exogenous hyperinsulinemia have been correlated to increased blood pressure. Although important information was gathered on the cellular mechanisms that are triggered by insulin in metabolic tissues and on their abnormalities, knowledge of the insulin-related mechanisms possibly involved in blood pressure regulation is limited. In this review, we summarize the current understanding of the cellular mechanisms that are involved in the pro-hypertensive actions of insulin, focusing on the contribution of insulin to the renal regulation of sodium balance and body fluids

    Alcohol Intake and Arterial Hypertension: Retelling of a Multifaceted Story

    Get PDF
    Alcoholic beverages are common components of diets worldwide and understanding their effects on humans’ health is crucial. Because hypertension is the leading risk factor for cardiovascular diseases and all-cause mortality, the relationship of alcohol consumption with blood pressure (BP) has been the subject of extensive investigation. For the purpose of this review, we searched the terms “alcohol”, “ethanol”, and “arterial hypertension” on Pubmed MeSH and selected the most relevant studies. Short-term studies showed a biphasic BP response after ingestion of high doses of alcohol, and sustained alcohol consumption above 30 g/day, significantly, and dose-dependently, increased the risk for hypertension. These untoward effects of alcoholic beverages on BP can be mediated by a multiplicity of neurohormonal mechanisms. In addition to the effects on BP, excess alcohol intake might contribute to cardiac and renal hypertensive organ damage, although some studies suggest possible benefits of moderate alcohol consumption on additional cardiovascular risk factors, such as diabetes and lipoprotein(a). Some intervention studies and cumulative analyses support the evidence of a benefit of the reduction/withdrawal of alcohol consumption on BP and cardiovascular outcomes. This is why guidelines of scientific societies recommend avoidance or limitation of alcohol intake below one unit/day for women and two units/day for men. This narrative article overviews all these topics, providing an update of the current knowledge on the relationship between alcohol and BP

    Association of arterial stiffness with a prothrombotic state in uncomplicated nondiabetic hypertensive patients

    Get PDF
    Background and aims: Past studies reported a significant contribution of a prothrombotic state to the development and progression of target organ damage in hypertensive patients. Stiffening of arterial vessels is associated with aging and hypertension, and additional factors could contribute to this process. This study was designed to examine the relationships between arterial stiffening and the hemostatic and fibrinolytic system. Methods: In 128 middle-aged, nondiabetic, essential hypertensive patients without major cardiovascular and renal complications, we measured coagulation markers that express the spontaneous activation of the hemostatic and fibrinolytic system and assessed stiffness of the arterial tree by measurement of the carotid/femoral pulse wave velocity (cfPWV) and pulse wave analysis with calculation of the brachial augmentation index (AIx). Results: Levels of fibrinogen (FBG), D-dimer (D-d), and plasminogen activator-inhibitor 1 (PAI-1) were significantly higher in patients with PWV and AIx above the median of the distribution. FBG, D-d, and PAI-1 were significantly and directly related with both cfPWV and AIx, and multivariate regression analysis indicated that the relationships of D-d and PAI-1 with both cfPWV and AIx and of FBG with AIx, were independent of age, body mass index, severity and duration of hypertension, use of antihypertensive drugs, blood glucose, and plasma lipids. Conclusion: In middle-aged, uncomplicated, nondiabetic patients with essential hypertension, spontaneous activation of plasma hemostatic cascade and impaired fibrinolysis is significantly and independently associated with stiffening of the arterial tree

    Association of non-alcoholic fatty liver disease with left ventricular changes in treatment-naive patients with uncomplicated hypertension

    Get PDF
    Background and aims: Cardiac structural and functional changes have been demonstrated in patients with non-alcoholic fatty liver disease (NAFLD). Because of the frequent association of NAFLD with hypertension, we aimed to examine the relationship of liver steatosis with left ventricular (LV) changes in patients with hypertension. Materials and methods: In a cross-sectional study, we included 360 untreated, essential hypertensive patients who were free of major cardiovascular and renal complications. Liver steatosis was assessed by three different biochemical scores (NAFLD Liver Fat Score, LFS; Fatty Liver Index, FLI; Hepatic Steatosis Index, HSI). Echocardiography was performed with standard B-mode and tissue-Doppler imaging. Results: LV hypertrophy was present in 19.4% and LV diastolic dysfunction in 49.2% of patients who had significantly higher body mass index (BMI), blood pressure (BP), and homeostatic model assessment (HOMA) index and higher frequency of the metabolic syndrome and liver steatosis that was defined by presence of 2 or more positive scores. LV mass index increased progressively across patients who had none, 1, or 2 or more liver steatosis scores, with associated progressive worsening of LV diastolic function. LV mass index was significantly and positively correlated with age, BMI, BP, HOMA-index, LFS, and HSI. Logistic regression analysis showed that age, BP, and liver steatosis scores independently predicted LV hypertrophy and diastolic dysfunction. Liver steatosis independently predicted LV dysfunction but not LV hypertrophy even after inclusion in analysis of the HOMA-index. Conclusion: NAFLD is associated with LV hypertrophy and diastolic dysfunction in untreated patients with hypertension. In hypertension, NAFLD could contribute to LV diastolic dysfunction with mechanisms unrelated to insulin resistance

    Short-term cardiac outcome in survivors of COVID-19: a systematic study after hospital discharge

    Get PDF
    Background: COVID-19 has caused considerable morbidity and mortality worldwide and cardiac involvement has been reported during infection. The short-term cardiac outcome in survivors of COVID-19 is not known. Objective: To examine the heart of patients who survived COVID-19 and to compare the cardiac outcome between patients who recovered from mild-to-moderate or severe illness. Methods: With use of ECG and echocardiography, we examined the heart of 105 patients who had been hospitalized with COVID-19 and were consecutively recruited after hospital discharge while attending follow-up visits. Survivors of COVID-19 were compared with 105 matched controls. We also compared the cardiac outcome and lung ultrasound scan between COVID-19 patients who had mild-to-moderate or severe illness. Results: Cardiac data were collected a median of 41\ua0days from the first detection of COVID-19. Symptoms were present in a low percentage of patients. In comparison with matched controls, no considerable structural or functional differences were observed in the heart of survivors of COVID-19. Lung ultrasound scan detected significantly greater residual pulmonary involvement in COVID-19 patients who had recovered from severe than mild-to-moderate illness. No significant differences were detected in ECG tracings nor were found in the left and right ventricular function of patients who had recovered from mild-to-moderate or severe illness. Conclusions: In a short-term follow-up, no abnormalities were identified in the heart of survivors of COVID-19, nor cardiac differences were detected between patients who had different severity of illness. With the limitations of a cross-sectional study, these findings suggest that patients who recover from COVID-19 do not have considerable cardiac sequelae. Graphic abstract: [Figure not available: see fulltext.

    Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News?

    Get PDF
    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including alpha-linolenic acid (ALA) and its derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are “essential” fatty acids mainly obtained from diet sources comprising plant oils, marine blue fish, and commercially available fish oil supplements. Many epidemiological and retrospective studies suggested that ω-3 PUFA consumption decreases the risk of cardiovascular disease, but results of early intervention trials have not consistently confirmed this effect. In recent years, some large-scale randomized controlled trials have shed new light on the potential role of ω-3 PUFAs, particularly high-dose EPA-only formulations, in cardiovascular prevention, making them an attractive tool for the treatment of “residual” cardiovascular risk. ω-3 PUFAs' beneficial effects on cardiovascular outcomes go far beyond the reduction in triglyceride levels and are thought to be mediated by their broadly documented “pleiotropic” actions, most of which are directed to vascular protection. A considerable number of clinical studies and meta-analyses suggest the beneficial effects of ω-3 PUFAs in the regulation of blood pressure in hypertensive and normotensive subjects. These effects occur mostly through regulation of the vascular tone that could be mediated by both endothelium-dependent and independent mechanisms. In this narrative review, we summarize the results of both experimental and clinical studies that evaluated the effect of ω-3 PUFAs on blood pressure, highlighting the mechanisms of their action on the vascular system and their possible impact on hypertension, hypertension-related vascular damage, and, ultimately, cardiovascular outcomes

    Effects of Monacolin K in Nondiabetic Patients with NAFLD: A Pilot Study

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver condition with significant risk of progression to steatohepatitis and cirrhosis. Therapeutic strategies in NAFLD include lifestyle changes mainly related to dietary interventions and use of drugs or nutritional components that could improve plasma lipid profiles and insulin sensitivity and decrease the local inflammatory response. In this study, we tested the effects of monacolin K, an inhibitor of HMCoA reductase. In a prospective, uncontrolled, open study, we treated 24 patients with NAFLD and mild hypercholesterolemia with 10 mg/day of monacolin K. At baseline and after 26 weeks, we measured in plasma liver tests, lipids, malondialdehyde, and oxidized glutathione, and assessed biochemical steatosis scores, liver elastography, and body composition with bioimpedance analysis. Monacolin K significantly reduced plasma alanine aminotransferase, cholesterol, triglycerides and the homeostatic model assessment (HOMA) index that indicated improved insulin sensitivity. No significant changes were found in body fat mass and visceral fat, nor in liver elastography, while the fatty liver index (FLI) was significantly decreased. Plasma levels of both malondialdehyde and oxidized glutathione were markedly reduced by monacolin K treatment, suggesting a reduction in oxidative stress and lipid peroxidation. In summary, this pilot study suggests possible benefits of monacolin K use in NAFLD patients that could be linked to a reduction in oxidative stress. This hypothesis should be further investigated in future studies

    Lipoprotein(a): Just an Innocent Bystander in Arterial Hypertension?

    Get PDF
    Elevated plasma lipoprotein(a) [Lp(a)] is a relatively common and highly heritable trait conferring individuals time-dependent risk of developing atherosclerotic cardiovascular disease (CVD). Following its first description, Lp(a) triggered enormous scientific interest in the late 1980s, subsequently dampened in the mid-1990s by controversial findings of some prospective studies. It was only in the last decade that a large body of evidence has provided strong arguments for a causal and independent association between elevated Lp(a) levels and CVD, causing renewed interest in this lipoprotein as an emerging risk factor with a likely contribution to cardiovascular residual risk. Accordingly, the 2022 consensus statement of the European Atherosclerosis Society has suggested inclusion of Lp(a) measurement in global risk estimation. The development of highly effective Lp(a)-lowering drugs (e.g., antisense oligonucleotides and small interfering RNA, both blocking LPA gene expression) which are still under assessment in phase 3 trials, will provide a unique opportunity to reduce “residual cardiovascular risk” in high-risk populations, including patients with arterial hypertension. The current evidence in support of a specific role of Lp(a) in hypertension is somehow controversial and this narrative review aims to overview the general mechanisms relating Lp(a) to blood pressure regulation and hypertension-related cardiovascular and renal damage

    The pivotal role of oleuropein in the anti-diabetic action of the mediterranean diet: A concise review

    Get PDF
    Type 2 diabetes currently accounts for more than 90% of all diabetic patients. Lifestyle interventions and notably dietary modifications are one of the mainstays for the prevention and treatment of type 2 diabetes. In this context, the Mediterranean diet with its elevated content of phytonutrients has been demonstrated to effectively improve glucose homeostasis. Oleuropein is the most abundant polyphenolic compound contained in extra-virgin olive oil and might account for some of the anti-diabetic actions of the Mediterranean diet. With the aim to provide an overview of the possible contributions of oleuropein to glucose metabolism, we conducted a PubMed/Medline search in order to provide an update to the available evidence regarding this interesting compound. This narrative review summarizes the data that was obtained in in vitro and animal studies and the results of clinical investigations. Preclinical studies indicate that oleuropein improves glucose transport, increases insulin sensitivity, and facilitates insulin secretion by pancreatic β-cells, thereby supporting the hypothesis of the possible benefits of the control of hyperglycemia. However, on the clinical side, the available evidence is still preliminary and requires more extensive investigations. Thus, many questions remain unanswered in regards to the potential benefits of oleuropein in diabetes prevention and treatment. These questions should be addressed in appropriately designed studies in the future
    corecore