43 research outputs found
The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation
Deciphering regulatory events that drive malignant transformation represents
a major challenge for systems biology. Here we analyzed genome-wide
transcription profiling of an in-vitro transformation process. We focused on a
cluster of genes whose expression levels increased as a function of p53 and
p16INK4A tumor suppressors inactivation. This cluster predominantly consists of
cell cycle genes and constitutes a signature of a diversity of cancers. By
linking expression profiles of the genes in the cluster with the dynamic
behavior of p53 and p16INK4A, we identified a promoter architecture that
integrates signals from the two tumor suppressive channels and that maps their
activity onto distinct levels of expression of the cell cycle genes, which in
turn, correspond to different cellular proliferation rates. Taking components
of the mitotic spindle as an example, we experimentally verified our
predictions that p53-mediated transcriptional repression of several of these
novel targets is dependent on the activities of p21, NFY and E2F. Our study
demonstrates how a well-controlled transformation process allows linking
between gene expression, promoter architecture and activity of upstream
signaling molecules.Comment: To appear in Molecular Systems Biolog
Recommended from our members
A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons
Funder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440Funder: University of Cambridge | Churchill College, University of Cambridge; doi: https://doi.org/10.13039/501100000742Abstract: PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts
Recommended from our members
A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons
Funder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440Funder: University of Cambridge | Churchill College, University of Cambridge; doi: https://doi.org/10.13039/501100000742Abstract: PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts
A Novel Translocation Breakpoint within the BPTF Gene Is Associated with a Pre-Malignant Phenotype
Partial gain of chromosome arm 17q is an abundant aberrancy in various cancer types such as lung and prostate cancer with a prominent occurrence and prognostic significance in neuroblastoma – one of the most common embryonic tumors. The specific genetic element/s in 17q responsible for the cancer-promoting effect of these aberrancies is yet to be defined although many genes located in 17q have been proposed to play a role in malignancy. We report here the characterization of a naturally-occurring, non-reciprocal translocation der(X)t(X;17) in human lung embryonal-derived cells following continuous culturing. This aberrancy was strongly correlated with an increased proliferative capacity and with an acquired ability to form colonies in vitro. The breakpoint region was mapped by fluorescence in situ hybridization (FISH) to the 17q24.3 locus. Further characterization by a custom-made comparative genome hybridization array (CGH) localized the breakpoint within the Bromodomain PHD finger Transcription Factor gene (BPTF), a gene involved in transcriptional regulation and chromatin remodeling. Interestingly, this translocation led to elevation in the mRNA levels of the endogenous BPTF. Knock-down of BPTF restricted proliferation suggesting a role for BPTF in promoting cellular growth. Furthermore, the BPTF chromosomal region was found to be amplified in various human tumors, especially in neuroblastomas and lung cancers in which 55% and 27% of the samples showed gain of 17q24.3, respectively. Additionally, 42% percent of the cancer cell lines comprising the NCI-60 had an abnormal BPTF locus copy number. We suggest that deregulation of BPTF resulting from the translocation may confer the cells with the observed cancer-promoting phenotype and that our cellular model can serve to establish causality between 17q aberrations and carcinogenesis
The processing of Holliday junctions by BLM and WRN helicases is regulated by p53.
BLM, WRN, and p53 are involved in the homologous DNA recombination pathway. The DNA structure-specific helicases, BLM and WRN, unwind Holliday junctions (HJ), an activity that could suppress inappropriate homologous recombination during DNA replication. Here, we show that purified, recombinant p53 binds to BLM and WRN helicases and attenuates their ability to unwind synthetic HJ in vitro. The p53 248W mutant reduces abilities of both to bind HJ and inhibit helicase activities, whereas the p53 273H mutant loses these abilities. Moreover, full-length p53 and a C-terminal polypeptide (residues 373-383) inhibit the BLM and WRN helicase activities, but phosphorylation at Ser(376) or Ser(378) completely abolishes this inhibition. Following blockage of DNA replication, Ser(15) phospho-p53, BLM, and RAD51 colocalize in nuclear foci at sites likely to contain DNA replication intermediates in cells. Our results are consistent with a novel mechanism for p53-mediated regulation of DNA recombinational repair that involves p53 post-translational modifications and functional protein-protein interactions with BLM and WRN DNA helicases
Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells
p53 deficiency enhances the efficiency of somatic cell reprogramming to a pluripotent state. As p53 is usually mutated in human tumors and many mutated forms of p53 gain novel activities, we studied the influence of mutant p53 (mut-p53) on somatic cell reprogramming. Our data indicate a novel gain of function (GOF) property for mut-p53, which markedly enhanced the efficiency of the reprogramming process compared with p53 deficiency. Importantly, this novel activity of mut-p53 induced alterations in the characteristics of the reprogrammed cells. Although p53 knockout (KO) cells reprogrammed with only Oct4 and Sox2 maintained their pluripotent capacity in vivo, reprogrammed cells expressing mutant p53 lost this capability and gave rise to malignant tumors. This novel GOF of mut-p53 is not attributed to its effect on proliferation, as both p53 KO and mut-p53 cells displayed similar proliferation rates. In addition, we demonstrate an oncogenic activity of Klf4, as its overexpression in either p53 KO or mut-p53 cells induced aggressive tumors. Overall, our data show that reprogrammed cells with the capacity to differentiate into the three germ layers in vitro can form malignant tumors, suggesting that in genetically unstable cells, such as those in which p53 is mutated, reprogramming may result in the generation of cells with malignant tumor-forming potential
Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site
We introduce a novel method to screen the promoters of a set of genes with
shared biological function, against a precompiled library of motifs, and find
those motifs which are statistically over-represented in the gene set. The gene
sets were obtained from the functional Gene Ontology (GO) classification; for
each set and motif we optimized the sequence similarity score threshold,
independently for every location window (measured with respect to the TSS),
taking into account the location dependent nucleotide heterogeneity along the
promoters of the target genes. We performed a high throughput analysis,
searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of
more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology
classes and for 412 known DNA motifs. When combined with binding site and
location conservation between human and mouse, the method identifies with high
probability functional binding sites that regulate groups of biologically
related genes. We found many location-sensitive functional binding events and
showed that they clustered close to the TSS. Our method and findings were put
to several experimental tests. By allowing a "flexible" threshold and combining
our functional class and location specific search method with conservation
between human and mouse, we are able to identify reliably functional TF binding
sites. This is an essential step towards constructing regulatory networks and
elucidating the design principles that govern transcriptional regulation of
expression. The promoter region proximal to the TSS appears to be of central
importance for regulation of transcription in human and mouse, just as it is in
bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure