156 research outputs found
What to expect when youâre prospecting: how new information changes our estimate of the chance of success of a prospect
There is a common belief that we can expect to add value to a prospect or prospect portfolio by improving the prospect chance of success (Pg) as a consequence of acquiring information and doing work. Established laws of probability dictate that this is incorrect. We do expect new information to add value to the exploration cycle, but not by an expectation of improving the prospect risk. New information may result in an increase or a decrease of Pg,
but the expected result (the average of all possible outcomes) is zero change. Moreover, for a typical exploration prospect (Pg <0.5), we expect that new information will downgrade more prospects Pg than are upgraded. Real-world prospect data are neither suitable nor publically available to study this. Instead, the concept is explored using an analogous process (prenatal prediction of fetus gender) for which good statistics exist, and by creating a synthetic prospect that can be analyzed in a repeatable way. The results support the predictions made above
A practical guide to the use of success versus failure statistics in the estimation of prospect risk
Statistical data documenting past exploration success and failure can be used to inform the estimate of future chance of success, but this is not appropriate to every situation. Even where appropriate, past frequency is not numerically equivalent to future expectation unless the sample size is very large.
Using the Rule of Succession of Laplace (1774), we calculate the appropriate predicted chance of future success that can be used for smaller sample numbers, typical of exploration data sets, which include both successes and failures. The results, presented as a simple look-up table, show that the error which would result from using simple frequency instead of the appropriately calculated value is particularly severe for small samples (>10% error arising if n< 9).
This error is least if past success rate is close to 0.5 but it increases markedly if the past data consist of mostly failure or mostly success.
We review the conditions in which past frequency can be used as a guide, and the circumstances in which it does not reflect future chance. Past success frequency should only be used as a guide to future chance if the past tests and future opportunities belong to the same play, and are similar as far as the available data allow. They should not be used if the historical tests have selectively sampled the âcreamâ of the pool of opportunities
Preparation of one 87Rb and one 133Cs atom in a single optical tweezer
We report the preparation of exactly one 87Rb atom and one133Cs atom in the same optical tweezer as the essential first step towards the construction of a tweezer array of individually trapped 87Rb133Cs molecules. Through careful selection of the tweezer wavelengths, we show how to engineer species-selective trapping potentials suitable for high-fidelity preparation of Rb + Cs atom pairs. Using a wavelength of 814 nm to trap Rb and 938 nm to trap Cs, we achieve loading probabilities of 0.508(6) for Rb and 0.547(6) for Cs using standard red-detuned molasses cooling. Loading the traps sequentially yields exactly one Rb and one Cs atom in 28.4(6) % of experimental runs. Using a combination of an acousto-optic deflector and a piezo-controlled mirror to control the relative position of the tweezers, we merge the two tweezers, retaining the atom pair with a probability of 0.99(+0.01)(â0.02).We use this capability to study hyperfine-state-dependent collisions of Rb and Cs in the combined tweezer and compare the measured two-body loss rates with coupled-channel quantum scattering calculations
Feshbach Spectroscopy of Cs Atom Pairs in Optical Tweezers
We prepare pairs of 133Cs atoms in a single optical tweezer and perform Feshbach spectroscopy for collisions of atoms in the states (f = 3, mf = ±3). We detect enhancements in pair loss using a detection scheme where the optical tweezers are repeatedly subdivided. For atoms in the state (3, â3), we identify resonant features by performing inelastic loss spectroscopy. We carry out coupled-channel scattering calculations and show that at typical experimental temperatures the loss features are mostly centred on zeroes in the scattering length, rather than resonance centres. We measure the number of atoms remaining after a collision, elucidating how the different loss processes are influenced by the tweezer depth. These measurements probe the energy released during an inelastic collision, and thus give information on the states of the collision products. We also identify resonances with atom pairs prepared in the absolute ground state (f = 3, mf = 3), where two-body radiative loss is engineered by an excitation laser blue-detuned from the Cs D2 line. These results demonstrate optical tweezers to be a versatile tool to study two-body collisions with number-resolved detection sensitivity
The Spectacle of Crime, Digitized
International audienceOne of the most significant features of the television series CSI: Crime Scene Investigationis its central preoccupation â forensic evidence â and the profession practised by its major characters â forensic science. Scientific inscriptions consistently allow the crime scene investigators (CSIs) to determine 'evidence' and 'truths' that otherwise elude them. At the same time, the dazzling digital effects used to punctuate key moments in each episode inevitably reference scientific technologies and the knowledge about reality that these promise. The success of the CSIs in every episode is premised upon knowledge guaranteed by scientific inscriptions and is itself an inscription of ways of seeing human bodies and the social body, represented by police scientists working to ensure public safety â a healthy social body. And it is also about how bodies, individual and social, are constituted as information, made knowable and validated by scientific instruments and procedures used to produce evidence
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factorsâthe summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6â58·8) of global deaths and 41·2% (39·8â42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
Search for the Standard Model Higgs boson decaying into bbÂŻ produced in association with top quarks decaying hadronically in pp collisions at âs = 8 TeV with the ATLAS detector
A search for Higgs boson production in association with a pair of top quarks (ttÂŻ H) is performed, where the Higgs boson decays to bbÂŻ, and both top quarks decay hadronically. The data used correspond to an integrated luminosity of 20.3 fbâ1 of pp collisions at âs = 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The search selects events with at least six energetic jets and uses a boosted decision tree algorithm to discriminate between signal and Standard Model background. The dominant multijet background is estimated using a dedicated data-driven technique. For a Higgs boson mass of 125 GeV, an upper limit of 6.4 (5.4) times the Standard Model cross section is observed (expected) at 95% confidence level. The best-fit value for the signal strength is ÎŒ = 1.6 ± 2.6 times the Standard Model expectation for mH = 125 GeV. Combining all ttÂŻ H searches carried out by ATLAS at âs = 8 and 7 TeV, an observed (expected) upper limit of 3.1 (1.4) times the Standard Model expectation is obtained at 95% confidence level, with a signal strength ÎŒ = 1.7 ± 0.8
- âŠ