2,331 research outputs found
Bimagnon studies in cuprates with Resonant Inelastic X-ray Scattering at the O K edge. II - The doping effect in La2-xSrxCuO4
We present RIXS data at O K edge from La2-xSrxCuO4 vs. doping between x=0.10
and x=0.22 with attention to the magnetic excitations in the Mid-Infrared
region. The sampling done by RIXS is the same as in the undoped cuprates
provided the excitation is at the first pre-peak induced by doping. Note that
this excitation energy is about 1.5 eV lower than that needed to see bimagnons
in the parent compound. This approach allows the study of the upper region of
the bimagnon continuum around 450 meV within about one third of the Brilluoin
Zone around \Gamma. The results show the presence of damped bimagnons and of
higher even order spin excitations with almost constant spectral weight at all
the dopings explored here. The implications on high Tc studies are briefly
addressed
Exchange Splitting and Charge Carrier Spin Polarization in EuO
High quality thin films of the ferromagnetic semiconductor EuO have been
prepared and were studied using a new form of spin-resolved spectroscopy. We
observed large changes in the electronic structure across the Curie and
metal-insulator transition temperature. We found that these are caused by the
exchange splitting of the conduction band in the ferromagnetic state, which is
as large as 0.6 eV. We also present strong evidence that the bottom of the
conduction band consists mainly of majority spins. This implies that doped
charge carriers in EuO are practically fully spin polarized.Comment: 4 pages, 5 figure
Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures
The Kondo model predicts that both the valence at low temperatures and its
temperature dependence scale with the characteristic energy T_K of the Kondo
interaction. Here, we study the evolution of the 4f occupancy with temperature
in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In
agreement with simple theoretical models, we observe a scaling between the
valence at low temperature and T_K obtained from thermodynamic measurements. In
contrast, the temperature scale T_v at which the valence increases with
temperature is almost the same in all investigated materials while the Kondo
temperatures differ by almost four orders of magnitude. This observation is in
remarkable contradiction to both naive expectation and precise theoretical
predictions of the Kondo model, asking for further theoretical work in order to
explain our findings. Our data exclude the presence of a quantum critical
valence transition in YbRh2Si2
Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films
Electronic properties of transition metal oxides at interfaces are influenced
by strain, electric polarization and oxygen diffusion. Linear dichroism (LD)
x-ray absorption, diffraction, transport and magnetization on thin
La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface
effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at
the interface, suppressing the double exchange mechanism. This surface orbital
reconstruction is opposite of that favored by residual strain and independent
of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure
High-resolution resonant inelastic soft X-ray scattering as a probe of the crystal electrical field in lanthanides demonstrated for the case of CeRh2Si2
The magnetic properties of rare earth compounds are usually well captured by
assuming a fully localized f shell and only considering the Hund's rule ground
state multiplet split by a crystal electrical field (CEF). Currently, the
standard technique for probing CEF excitations in lanthanides is inelastic
neutron scattering. Here we show that with the recent leap in energy
resolution, resonant inelastic soft X-ray scattering has become a serious
alternative for looking at CEF excitations with some distinct advantages
compared to INS. As an example we study the CEF scheme in CeRh2Si2, a system
that has been intensely studied for more than two decades now but for which no
consensus has been reached yet as to its CEF scheme. We used two new features
that have only become available very recently in RIXS, high energy resolution
of about 30 meV as well as polarization analysis in the scattered beam, to find
a unique CEF description for CeRh2Si2. The result agrees well with previous INS
and magnetic susceptibility measurements. Due to its strong resonant character,
RIXS is applicable to very small samples, presents very high cross sections for
all lanthanides, and further benefits from the very weak coupling to phonon
excitation. The rapid progress in energy resolution of RIXS spectrometers is
making this technique increasingly attractive for the investigation of the CEF
scheme in lanthanides
Site-selective Probe of Magnetic Excitations in Rare-earth Nickelates using Resonant Inelastic X-ray Scattering
We have used high-resolution resonant inelastic x-ray scattering (RIXS) to
study a thin film of NdNiO, a compound whose unusual spin- and bond-ordered
electronic ground state has been of long-standing interest. Below the magnetic
ordering temperature, we observe well-defined collective magnon excitations
along different high-symmetry directions in momentum space. The magnetic
spectra depend strongly on the incident photon energy, which we attribute to
RIXS coupling to different local electronic configurations of the expanded and
compressed NiO octahedra in the bond-ordered state. Both the noncollinear
magnetic ground state and the observed site-dependent magnon excitations are
well described by a model that assumes strong competition between the
antiferromagnetic superexchange and ferromagnetic double-exchange interactions.
Our study provides direct insight into the magnetic dynamics and exchange
interactions of the rare-earth nickelates, and demonstrates that RIXS can serve
as a site-selective probe of magnetism in these and other materials.Comment: Phys. Rev. X, in pres
A Combined EIS-NVSS Survey Of Radio Sources (CENSORS) III: Spectroscopic observations
The Combined EIS-NVSS Survey Of Radio Sources (CENSORS) is a 1.4GHz radio
survey selected from the NRAO VLA Sky Survey (NVSS) and complete to a
flux-density of 7.2mJy. It targets the ESO Imaging Survey (EIS) Patch D, which
is a 3 by 2 square degree field centred on 09 51 36.0, -21 00 00 (J2000). This
paper presents the results of spectroscopic observations of 143 of the 150
CENSORS sources. The primary motivation for these observations is to achieve
sufficient spectroscopic completeness so that the sample may be used to
investigate the evolution of radio sources.
The observations result in secure spectroscopic redshifts for 63% of the
sample and likely redshifts (based on a single emission line, for example) for
a further 8%. Following the identification of the quasars and star-forming
galaxies in the CENSORS sample, estimated redshifts are calculated for the
remainder of the sample via the K-z relation for radio galaxies. Comparison of
the redshift distribution of the CENSORS radio sources to distributions
predicted by the various radio luminosity function evolution models of Dunlop &
Peacock 1990, results in no good match. This demonstrates that this sample can
be used to expand upon previous work in that field.Comment: Accepted for publication in MNRAS. This version has some reduced
resolution figures and 13 associated gif files. A version with all figures
incorporated (at full resolution) is available at
http://www.roe.ac.uk/~pnb/papers/censors_spectro.pd
Hole-depletion of ladders in SrCuO induced by correlation effects
The hole distribution in SrCuO is studied by low
temperature polarization dependent O K Near-Edge X-ray Absorption Fine
Structure measurements and state of the art electronic structure calculations
that include core-hole and correlation effects in a mean-field approach.
Contrary to all previous analysis, based on semi-empirical models, we show that
correlations and antiferromagnetic ordering favor the strong chain
hole-attraction. For the remaining small number of holes accommodated on
ladders, leg-sites are preferred to rung-sites. The small hole affinity of
rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of
(La,Y,Sr,Ca)CuOComment: 6 pages, 8 figure
Magnetic excitations in stripe-ordered LaBaCuO studied using resonant inelastic x-ray scattering
The charge and spin correlations in LaBaCuO (LBCO
1/8) are studied using Cu edge resonant inelastic x-ray scattering
(RIXS). The static charge order (CO) is observed at a wavevector of
and its charge nature confirmed by measuring the dependence of this peak on the
incident x-ray polarization. The paramagnon excitation in LBCO 1/8 is then
measured as it disperses through the CO wavevector. Within the experimental
uncertainty no changes are observed in the paramagnon due to the static CO, and
the paramagnon seems to be similar to that measured in other cuprates, which
have no static CO. Given that the stripe correlation modulates both the charge
and spin degrees of freedom, it is likely that subtle changes do occur in the
paramagnon due to CO. Consequently, we propose that future RIXS measurements,
realized with higher energy resolution and sensitivity, should be performed to
test for these effects.Comment: 5 pages, 4 figure
- …