180 research outputs found

    The Spitzer c2d Survey of Nearby Dense Cores: III: Low Mass Star Formation in a Small Group, L1251B

    Get PDF
    We present a comprehensive study of a low-mass star-forming region,L1251B, at wavelengths from the near-infrared to the millimeter. L1251B, where only one protostar, IRAS 22376+7455, was known previously, is confirmed to be a small group of protostars based on observations with the Spitzer Space Telescope. The most luminous source of L1251B is located 5" north of the IRAS position. A near-infrared bipolar nebula, which is not associated with the brightest object and is located at the southeast corner of L1251B, has been detected in the IRAC bands. OVRO and SMA interferometric observations indicate that the brightest source and the bipolar nebula source in the IRAC bands are deeply embedded disk sources.Submillimeter continuum observations with single-dish telescopes and the SMA interferometric observations suggest two possible prestellar objects with very high column densities. Outside of the small group, many young stellar object candidates have been detected over a larger region of 12' x 12'. Extended emission to the east of L1251B has been detected at 850 micron; this "east core" may be a site for future star formation since no point source has been detected with IRAC or MIPS. This region is therefore a possible example of low-mass cluster formation, where a small group of pre- and protostellar objects (L1251B) is currently forming, alongside a large starless core (the east core).Comment: 35 pages, 15 figures, accepted for publication in ApJ, for the full resolution paper, visit "http://peggysue.as.utexas.edu/SIRTF/PAPERS/pap27.pub.pdf

    The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of A Dense Embedded Cluster in the Serpens-Aquila Rift

    Get PDF
    We report the discovery of a nearby, embedded cluster of young stellar objects, associated filamentary infrared dark cloud, and 4.5 mu m shock emission knots from outflows detected in Spitzer IRAC mid-infrared imaging of the Serpens-Aquila Rift obtained as part of the Spitzer Gould Belt Legacy Survey. We also present radial velocity measurements of the region from molecular line observations obtained with the Submillimeter Array (SMA) that suggest the cluster is comoving with the Serpens Main embedded cluster to the north. We therefore assign it 3 degrees the same distance, 260 pc. The core of the new cluster, which we call Serpens South, is composed of an unusually large fraction of protostars (77%) at high mean surface density (> 430 pc(-2)) and short median nearest neighbor spacing (3700 AU). We perform basic cluster structure characterization using nearest neighbor surface density mapping of the YSOs and compare our findings to other known clusters with equivalent analyses available in the literature.Astronom

    The c2d Spitzer Spectroscopic Survey Of Ices Around Low-Mass Young Stellar Objects. I. H2O And The 5-8 Mu M Bands

    Get PDF
    To study the physical and chemical evolution of ices in solar-mass systems, a spectral survey is conducted of a sample of 41 low-luminosity YSOs (L similar to 0.1-10 L-circle dot) using 3-38 mu m Spitzer and ground-based spectra. The sample is complemented with previously published Spitzer spectra of background stars and with ISO spectra of well-studied massive YSOs (L similar to 10(5) L-circle dot). The long-known 6.0 and 6.85 mu m bands are detected toward all sources, with the Class 0-type YSOs showing the deepest bands ever observed. The 6.0 mu m band is often deeper than expected from the bending mode of pure solid H2O. The additional 5-7 mu m absorption consists of five independent components, which, by comparison to laboratory studies, must be from at least eight different carriers. Much of this absorption is due to simple species likely formed by grain surface chemistry, at abundances of 1%-30% for CH3OH, 3%-8% for NH3, 1%-5% for HCOOH, similar to 6% for H2CO, and similar to 0.3% for HCOO- relative to solid H2O. The 6.85 mu m band has one or two carriers, of which one may be less volatile than H2O. Its carrier(s) formed early in the molecular cloud evolution and do not survive in the diffuse ISM. If an NH4+- containing salt is the carrier, its abundance relative to solid H2O is similar to 7%, demonstrating the efficiency of low-temperature acid-base chemistry or cosmic-ray-induced reactions. Possible origins are discussed for enigmatic, very broad absorption between 5 and 8 mu m. Finally, the same ices are observed toward massive and low-mass YSOs, indicating that processing by internal UV radiation fields is a minor factor in their early chemical evolution.NWO SpinozaNOVAEuropean Research Training Network PLANETS HPRN-CT-2002-00308NASA Origins NAG5-13050NASA Hubble Fellowship 01201.01NASA NAS 5-26555Astronom

    The Spitzer survey of interstellar clouds in the Gould Belt. I. IC 5146 observed with IRAC and MIPS

    Get PDF
    We present observations of two areas totalling 0.57 deg^2 in the IC 5146 star-forming region at 3.6, 4.5, 5.8, 8.0, 24, and 70 Όm observed with the Spitzer Space Telescope. We reexamine the issue of the distance to this cloud and conclude a value of 950 ± 80 pc is most likely. We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. We identify more than 200 young stellar object (YSO) candidates from color-magnitude and color-color diagrams, many of which were previously unknown. We compare the colors of these YSOs to the models of Robitaille et al. and perform simple fits to the SED's to estimate properties of the circumstellar disks likely to surround the Class II and III sources. We also compare the mid-IR disk excesses to Hα emission-line data where available. We present a quantitative description of the degree of clustering, estimate the star formation efficiency, and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Finally, we compare the YSO distribution to the cold dust distribution mapped by SCUBA and briefly describe the diffuse emission likely due to PAHs associated with the H II region

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IV. Lupus Observed with MIPS

    Get PDF
    We present maps of 7.78 square degrees of the Lupus molecular cloud complex at 24, 70, and 160 Ό160\:\mum. They were made with the Spitzer Space Telescope's Multiband Imaging Photometer for Spitzer (MIPS) instrument as part of the Spitzer Legacy Program, ``From Molecular Cores to Planet-Forming Disks'' (c2d). The maps cover three separate regions in Lupus, denoted I, III, and IV. We discuss the c2d pipeline and how our data processing differs from it. We compare source counts in the three regions with two other data sets and predicted star counts from the Wainscoat model. This comparison shows the contribution from background galaxies in Lupus I. We also create two color magnitude diagrams using the 2MASS and MIPS data. From these results, we can identify background galaxies and distinguish them from probable young stellar objects. The sources in our catalogs are classified based on their spectral energy distribution (SED) from 2MASS and Spitzer wavelengths to create a sample of young stellar object candidates. From 2MASS data, we create extinction maps for each region and note a strong corresponence between the extinction and the 160 Ό160\:\mum emission. The masses we derived in each Lupus cloud from our extinction maps are compared to masses estimated from 13^{13}CO and C18^{18}O and found to be similar to our extinction masses in some regions, but significantly different in others. Finally, based on our color-magnitude diagrams, we selected 12 of our reddest candidate young stellar objects for individual discussion. Five of the 12 appear to be newly-discovered YSOs.Comment: 15 pages, 17 figures, uses emulateapj.cls. Accepted for publication in ApJ. A version with high-quality figures can be found at http://peggysue.as.utexas.edu/SIRTF

    The Spitzer c2d Survey of Nearby Dense Cores: I: First Direct Detection of the Embedded Source in IRAM 04191+1522

    Get PDF
    We report the first detections of the Class 0 protostellar source IRAM 04191+1522 at wavelengths shortward of 60 microns with the Spitzer Space Telescope. We see extended emission in the Spitzer images that suggests the presence of an outflow cavity in the circumstellar envelope. We combine the Spitzer observations with existing data to form a complete dataset ranging from 3.6 to 1300 microns and use these data to construct radiative transfer models of the source. We conclude that the internal luminosity of IRAM 04191+1522, defined to be the sum of the luminosity from the internal sources (a star and a disk), is L_int = 0.08 +/- 0.04 L_sun, placing it among the lowest luminosity protostars known. Though it was discovered before the launch of the Spitzer Space Telescope, IRAM 04191+1522 falls within a new class of Very Low Luminosity Objects being discovered by Spitzer. Unlike the two other well-studied objects in this class, which are associated either with weak, compact outflows or no outflows at all, IRAM 04191+1522 has a well-defined molecular outflow with properties consistent with those expected based on relations derived from higher luminosity (L_int > 1 L_sun) protostars. We discuss the difficulties in understanding IRAM 04191+1522 in the context of the standard model of star formation, and suggest a possible explanation for the very low luminosity of this source.Comment: Accepted for publication in the Astrophysical Journal. 39 pages, 9 figures. See http://peggysue.as.utexas.edu/SIRTF/ for high-resolution figure

    The Spitzer c2d Survey of Nearby Dense Cores: II: Discovery of a Low Luminosity Object in the "Evolved Starless Core" L1521F

    Get PDF
    We present Spitzer Space Telescope observations of the "evolved starless core" L1521F which reveal the presence of a very low luminosity object (L < 0.07 Lsun). The object, L1521F-IRS, is directly detected at mid-infrared wavelengths (>5 micron) but only in scattered light at shorter infrared wavelengths, showing a bipolar nebula oriented east-west which is probably tracing an outflow cavity. The nebula strongly suggests that L1521F-IRS is embedded in the L1521F core. Thus L1521F-IRS is similar to the recently discovered L1014-IRS and the previously known IRAM 04191 in its substellar luminosity and dense core environment. However these objects differ significantly in their core density, core chemistry, and outflow properties, and some may be destined to be brown dwarfs rather than stars.Comment: 10 pages with 3 figures, accepted by ApJ Letter

    The Spitzer c2d survey of large, nearby, interstellar clouds. I. Chamaeleon II observed with MIPS

    Get PDF
    We present maps of over 1.5 deg2 in Chamaeleon (Cha) II at 24, 70, and 160 ÎŒm observed with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) and a 1.2 deg2 millimeter map from SIMBA on the Swedish-ESO Submillimetre Telescope (SEST). The c2d Spitzer Legacy Team's data reduction pipeline is described in detail. Over 1500 24 ÎŒm sources and 41 70 ÎŒm sources were detected by MIPS with fluxes greater than 10 σ. More than 40 potential YSOs are identified with a MIPS and 2MASS color-color diagram and by their spectral indices, including two previously unknown sources with 24 ÎŒm excesses. Our new SIMBA millimeter map of Cha II shows that only a small fraction of the gas is in compact structures with high column densities. The extended emission seen by MIPS is compared with previous CO observations. Some selected interesting sources, including two detected at 1 mm, associated with Cha II are discussed in detail, and their SEDs are presented. The classification of these sources using MIPS data is found to be consistent with that of previous studies

    The Spitzer c2d Survey of Nearby Dense Cores. I. First Direct Detection of the Embedded Source in IRAM 04191+1522

    Get PDF
    We report the first detections of the Class 0 protostellar source IRAM 04191+1522 at wavelengths shortward of 60 ÎŒm with the Spitzer Space Telescope. We see extended emission in the Spitzer images that suggests the presence of an outflow cavity in the circumstellar envelope. We combine the Spitzer observations with existing data to form a complete data set ranging from 3.6 to 1300 ÎŒm and use these data to construct radiative transfer models of the source. We conclude that the internal luminosity of IRAM 04191+1522, defined to be the sum of the luminosity from the internal sources (a star and a disk), is L_(int) = 0.08 ± 0.04 L_⊙, placing it among the lowest luminosity protostars known. Although it was discovered before the launch of the Spitzer Space Telescope, IRAM 04191+1522 falls within a new class of very low luminosity objects being discovered by Spitzer. Unlike the two other well-studied objects in this class, which are associated either with weak, compact outflows or no outflows at all, IRAM 04191+1522 has a well-defined molecular outflow with properties consistent with those expected based on relations derived from higher luminosity (L_(int) ≄ 1 L_⊙) protostars. We discuss the difficulties in understanding IRAM 04191+1522 in the context of the standard model of star formation and suggest a possible explanation for the very low luminosity of this source

    The Spitzer c2d Survey of Nearby Dense Cores: IV. Revealing the Embedded Cluster in B59

    Get PDF
    Infrared images of the dark cloud core B59 were obtained with the Spitzer Space Telescope as part of the "Cores to Disks" Legacy Science project. Photometry from 3.6-70 microns indicates at least 20 candidate low-mass young stars near the core, more than doubling the previously known population. Out of this group, 13 are located within about 0.1 pc in projection of the molecular gas peak, where a new embedded source is detected. Spectral energy distributions span the range from small excesses above photospheric levels to rising in the mid-infrared. One other embedded object, probably associated with the millimeter source B59-MMS1, with a bolometric luminosity L(bol) roughly 2 L(sun), has extended structure at 3.6 and 4.5 microns, possibly tracing the edges of an outflow cavity. The measured extinction through the central part of the core is A(V) greater than of order 45 mag. The B59 core is producing young stars with a high efficiency
    • 

    corecore