4,192 research outputs found
Loop bounds on non-standard neutrino interactions
We reconsider the bounds on non-standard neutrino interactions with matter
which can be derived by constraining the four-charged-lepton operators induced
at the loop level. We find that these bounds are model dependent. Naturalness
arguments can lead to much stronger constraints than those presented in
previous studies, while no completely model-independent bounds can be derived.
We will illustrate how large loop-contributions to four-charged-lepton
operators are induced within a particular model that realizes gauge invariant
non-standard interactions and discuss conditions to avoid these bounds. These
considerations mainly affect the constraint on the
non-standard coupling strength \eps_{e\mu}, which is lost. The only
model-independent constraints that can be derived are .
However, significant cancellations are required in order to saturate this
bound.Comment: Minor changes, version to be published in JHEP. 17 pages, 3 Axodraw
figures, REVTeX
General bounds on non-standard neutrino interactions
We derive model-independent bounds on production and detection non-standard
neutrino interactions (NSI). We find that the constraints for NSI parameters
are around O(10^{-2}) to O(10^{-1}). Furthermore, we review and update the
constraints on matter NSI. We conclude that the bounds on production and
detection NSI are generally one order of magnitude stronger than their matter
counterparts.Comment: 18 pages, revtex4, 1 axodraw figure. Minor changes, matches published
versio
Les Houches 2015: Physics at TeV colliders - new physics working group report
We present the activities of the 'New Physics' working group for the 'Physics
at TeV Colliders' workshop (Les Houches, France, 1-19 June, 2015). Our report
includes new physics studies connected with the Higgs boson and its properties,
direct search strategies, reinterpretation of the LHC results in the building
of viable models and new computational tool developments. Important signatures
for searches for natural new physics at the LHC and new assessments of the
interplay between direct dark matter searches and the LHC are also considered.Comment: Proceedings of the New Physics Working Group of the 2015 Les Houches
Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 197 page
Probing BFKL Dynamics in the Dijet Cross Section at Large Rapidity Intervals in ppbar Collisions at sqrt{s}=1800 and 630 GeV
Inclusive dijet production at large pseudorapidity intervals (delta_eta)
between the two jets has been suggested as a regime for observing BFKL
dynamics. We have measured the dijet cross section for large delta_eta in ppbar
collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic
cross section increases strongly with the size of delta_eta. The observed
growth is even stronger than expected on the basis of BFKL resummation in the
leading logarithmic approximation. The growth of the partonic cross section can
be accommodated with an effective BFKL intercept of
a_{BFKL}(20GeV)=1.65+/-0.07.Comment: Published in Physical Review Letter
Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel
We present results of a search for R-parity-violating decay of the neutralino
chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that
this decay proceeds through one of the lepton-number violating couplings
lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data,
collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at
a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure
A Quasi-Model-Independent Search for New Physics at Large Transverse Momentum
We apply a quasi-model-independent strategy ("Sleuth") to search for new high
p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV
collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron.
Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X
exclusive final states are systematically analyzed for hints of physics beyond
the standard model. Simultaneous sensitivity to a variety of models predicting
new phenomena at the electroweak scale is demonstrated by testing the method on
a particular signature in each set of final states. No evidence of new high p_T
physics is observed in the course of this search, and we find that 89% of an
ensemble of hypothetical similar experimental runs would have produced a final
state with a candidate signal more interesting than the most interesting
observed in these data.Comment: 28 pages, 17 figures. Submitted to Physical Review
- …