14 research outputs found

    In vivo characterization of 3D-printed polycaprolactone-hydroxyapatite scaffolds with Voronoi design to advance the concept of scaffold-guided bone regeneration

    Get PDF
    Three-dimensional (3D)-printed medical-grade polycaprolactone (mPCL) composite scaffolds have been the first to enable the concept of scaffold-guided bone regeneration (SGBR) from bench to bedside. However, advances in 3D printing technologies now promise next-generation scaffolds such as those with Voronoi tessellation. We hypothesized that the combination of a Voronoi design, applied for the first time to 3D-printed mPCL and ceramic fillers (here hydroxyapatite, HA), would allow slow degradation and high osteogenicity needed to regenerate bone tissue and enhance regenerative properties when mixed with xenograft material. We tested this hypothesis in vitro and in vivo using 3D-printed composite mPCL-HA scaffolds (wt 96%:4%) with the Voronoi design using an ISO 13485 certified additive manufacturing platform. The resulting scaffold porosity was 73% and minimal in vitro degradation (mass loss <1%) was observed over the period of 6 months. After loading the scaffolds with different types of fresh sheep xenograft and ectopic implantation in rats for 8 weeks, highly vascularized tissue without extensive fibrous encapsulation was found in all mPCL-HA Voronoi scaffolds and endochondral bone formation was observed, with no adverse host-tissue reactions. This study supports the use of mPCL-HA Voronoi scaffolds for further testing in future large preclinical animal studies prior to clinical trials to ultimately successfully advance the SGBR concept

    Elucidating the molecular mechanisms for the interaction of water with polyethylene glycol-based hydrogels : Influence of ionic strength and gel network structure

    No full text
    The interaction of water within synthetic and natural hydrogel systems is of fundamental importance in biomaterial science. A systematic study is presented on the swelling behavior and states of water for a polyethylene glycol-diacrylate (PEGDA)-based model neutral hydrogel system that goes beyond previous studies reported in the literature. Hydrogels with different network structures are crosslinked and swollen in different combinations of water and phosphate-buffered saline (PBS). Network variables, polyethylene glycol (PEG) molecular weight (MW), and weight fraction are positively correlated with swelling ratio, while “non-freezable bound water” content decreases with PEG MW. The presence of ions has the greatest influence on equilibrium water and “freezable” and “non-freezable” water, with all hydrogel formulations showing a decreased swelling ratio and increased bound water as ionic strength increases. Similarly, the number of “non-freezable bound water” molecules, calculated from DSC data, is greatest—up to six molecules per PEG repeat unit—for gels swollen in PBS. Fundamentally, the balance of osmotic pressure and non-covalent bonding is a major factor within the molecular structure of the hydrogel system. The proposed model explains the dynamic interaction of water within hydrogels in an osmotic environment. This study will point toward a better understanding of the molecular nature of the water interface in hydrogels.</p

    Personal journeys of teachers: an investigation of the development of teacher professional knowledge and skill by expert tertiary chemistry teachers

    No full text
    Several common characteristics of the journey towards tertiary teaching expertise have been deduced through a detailed analysis of transcripts that originated from interviews conducted with ten recognised excellent tertiary chemistry teachers. The interviews were structured around Loughran's CoRe questions and yielded deep insights into the topic specific professional knowledge and reflective practice of the participants. The interview participants offered their insights into changes that occurred in their teaching strategies and practices as they progressed in their expertise. They also reflected on changes that they undertook over time within their teaching contexts in terms of engaging students and assessment, and what advice they wish that they had been given as new tertiary teachers. We have identified signposts of expert teacher professional knowledge and skill that further expand on our previously published outcomes including: seeking immediate feedback from students; a tendency to reduce total content to a critical minimum; reflective practice; and a willingness and ability to modify teaching approaches. The outcomes support our previous findings that tertiary chemistry teachers had primarily developed their PCK through their own teaching experiences and awareness of their own students' outcomes, filtered by their individual beliefs and backgrounds. In this study, we provide new insight into the nature of inherent reflective practice that has evolved by experience rather than through formal professional development

    Deciphering the molecular mechanism of water interaction with gelatin methacryloyl hydrogels : Role of ionic strength, ph, drug loading and hydrogel network characteristics

    No full text
    Water plays a primary role in the functionality of biomedical polymers such as hydrogels. The state of water, defined as bound, intermediate, or free, and its molecular organization within hydrogels is an important factor governing biocompatibility and hemocompatibility. Here, we present a systematic study of water states in gelatin methacryloyl (GelMA) hydrogels designed for drug delivery and tissue engineering applications. We demonstrate that increasing ionic strength of the swelling media correlated with the proportion of non-freezable bound water. We attribute this to the capability of ions to create ion–dipole bonds with both the polymer and water, thereby reinforcing the first layer of polymer hydration. Both pH and ionic strength impacted the mesh size, having potential implications for drug delivery applications. The mechanical properties of GelMA hydrogels were largely unaffected by variations in ionic strength or pH. Loading of cefazolin, a small polar antibiotic molecule, led to a dose-dependent increase of non-freezable bound water, attributed to the drug’s capacity to form hydrogen bonds with water, which helped recruit water molecules in the hydrogels’ first hydration layer. This work enables a deeper understanding of water states and molecular arrangement at the hydrogel–polymer interface and how environmental cues influence them.</p

    Rational Design of High-RI Resists for 193nm Immersion Lithography

    No full text
    We have developed a Quantitative Structure Property Relationship (QSPR) model for predicting the refractive index of small molecules and polymers at 193 nm. This model has been useful for screening databases of compounds for high refractive index to include in our program of synthesis of polymer having high RI. A range of novel target structures were identified and prepared via free radical polymerization. In addition polymers were also synthesized via Michael addition polymerization. Preliminary dose-to-clear and imaging experiments identified a number of promising candidates for incorporation into high refractive index resist materials. The platforms presented may be limited by relatively high intrinsic absorbance, and so design limits for incorporation of sulfur are given

    Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-L-lactide) as an elastomeric scaffold for vascular engineering

    No full text
    The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co- trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by Îł-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young's moduli closely matching human arteries (0.4-0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo
    corecore