11,208 research outputs found
Subspace Least Squares Multidimensional Scaling
Multidimensional Scaling (MDS) is one of the most popular methods for
dimensionality reduction and visualization of high dimensional data. Apart from
these tasks, it also found applications in the field of geometry processing for
the analysis and reconstruction of non-rigid shapes. In this regard, MDS can be
thought of as a \textit{shape from metric} algorithm, consisting of finding a
configuration of points in the Euclidean space that realize, as isometrically
as possible, some given distance structure. In the present work we cast the
least squares variant of MDS (LS-MDS) in the spectral domain. This uncovers a
multiresolution property of distance scaling which speeds up the optimization
by a significant amount, while producing comparable, and sometimes even better,
embeddings.Comment: Scale Space and Variational Methods in Computer Vision: 6th
International Conference, SSVM 2017, Kolding, Denmark, June 4-8, 201
Deformable Shape Completion with Graph Convolutional Autoencoders
The availability of affordable and portable depth sensors has made scanning
objects and people simpler than ever. However, dealing with occlusions and
missing parts is still a significant challenge. The problem of reconstructing a
(possibly non-rigidly moving) 3D object from a single or multiple partial scans
has received increasing attention in recent years. In this work, we propose a
novel learning-based method for the completion of partial shapes. Unlike the
majority of existing approaches, our method focuses on objects that can undergo
non-rigid deformations. The core of our method is a variational autoencoder
with graph convolutional operations that learns a latent space for complete
realistic shapes. At inference, we optimize to find the representation in this
latent space that best fits the generated shape to the known partial input. The
completed shape exhibits a realistic appearance on the unknown part. We show
promising results towards the completion of synthetic and real scans of human
body and face meshes exhibiting different styles of articulation and
partiality.Comment: CVPR 201
Non-Rigid Puzzles
Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non-rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non-rigid multi-part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non-rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario
Graph matching: relax or not?
We consider the problem of exact and inexact matching of weighted undirected
graphs, in which a bijective correspondence is sought to minimize a quadratic
weight disagreement. This computationally challenging problem is often relaxed
as a convex quadratic program, in which the space of permutations is replaced
by the space of doubly-stochastic matrices. However, the applicability of such
a relaxation is poorly understood. We define a broad class of friendly graphs
characterized by an easily verifiable spectral property. We prove that for
friendly graphs, the convex relaxation is guaranteed to find the exact
isomorphism or certify its inexistence. This result is further extended to
approximately isomorphic graphs, for which we develop an explicit bound on the
amount of weight disagreement under which the relaxation is guaranteed to find
the globally optimal approximate isomorphism. We also show that in many cases,
the graph matching problem can be further harmlessly relaxed to a convex
quadratic program with only n separable linear equality constraints, which is
substantially more efficient than the standard relaxation involving 2n equality
and n^2 inequality constraints. Finally, we show that our results are still
valid for unfriendly graphs if additional information in the form of seeds or
attributes is allowed, with the latter satisfying an easy to verify spectral
characteristic
- …
