255 research outputs found

    Uncertainty Analysis Methodology for Measurements of Dynamic Millimeter-Wave Channels

    Get PDF
    Quantification of uncertainties in the results of channel sounding measurements is important for their interpretation and further usage. In this paper, a novel uncertainty analysis methodology to quantify uncertainties of condensed parameters in measurements of dynamic millimeter-wave channels is presented. The bandwidth limitation and multipath threshold are identified as important impairments. Therefore, the methodology provides three uncertainty metrics for condensed parameters, namely a standard uncertainty to quantify the impact of random variations; a bias due to the multipath threshold; and a total bias including the impact of the bandwidth limitation. These uncertainty metrics are highly channel dependent. Therefore, the proposed methodology creates reference channels, which are representative of corresponding measured channels. Hardware and processing impairments are included in the analysis via a Monte Carlo simulation. This results in a general methodology that can quantify uncertainties in both static and dynamic channel measurements of any wideband channel sounder. The methodology is implemented, verified and demonstrated for the TU/e channel sounder, which exemplifies how it can be used. The proposed methodology can improve the analysis, interpretation and reporting of channel measurement results.</p

    Reduced Protein Expression of the Na+/Ca2++K+-Exchanger (SLC24A4) in Apical Plasma Membranes of Maturation Ameloblasts of Fluorotic Mice

    Get PDF
    Exposure of forming enamel to fluoride results into formation of hypomineralized enamel. We tested whether enamel hypomineralization was caused by lower expression of the NCKX4/SLC24A4 Ca2+-transporter by ameloblasts. Three commercial antibodies against NCKX4 were tested on enamel organs of wild-type and Nckx4-null mice, one of which (a mouse monoclonal) was specific. This antibody gave a prominent staining of the apical plasma membranes of maturation ameloblasts, starting at early maturation. The layer of immuno-positive ameloblasts contained narrow gaps without immunostaining or with reduced staining. In fluorotic mouse incisors, the quantity of NCKX4 protein in ameloblasts as assessed by western blotting was not different from that in non-fluorotic ameloblasts. However, immunostaining of the apical plasma membranes of fluorotic ameloblasts was strongly reduced or absent suggesting that trafficking of NCKX4 to the apical membrane was strongly reduced. Exposure to fluoride may reduce NCKX4-mediated transport of Ca2+ by maturation stage ameloblasts which delays ameloblast modulation and reduces enamel mineralization

    Micro-PIXE (Proton-Induced X-Ray Emission) Study of the Effects of Fluoride on Mineral Distribution Patterns in Enamel and Dentin in the Developing Hamster Tooth Germ

    Get PDF
    Micro-PIXE (proton-induced X-ray emission) analysis was performed on unfixed and anhydrously prepared sections from developing enamel and dentin from hamsters injected with a single dose of 20 mg NaF /kg body weight. Fluoride, apart from inducing the formation of the characteristic paired response in the enamel (i.e., a hyper- followed by a hypomineralized band in the secretory enamel), also induces the formation of sub-ameloblastic cystic lesions under the transitional and early secretory enamel accompanied by relatively intense hypermineralization of the underlying cystic enamel surface. These cystic lesions, however, were only found to be associated with certain isolated populations of these cells. In addition, these lesions were restricted to the smooth surfaces of the tooth germ only. Cystic lesions such as those seen under the transitional and early secretory ameloblasts were not observed under the fully secretory or maturation stage ameloblasts. Why fluoride induces the formation of cystic lesions in some ameloblast populations while other cells in the same stage of development apparently remain unaffected, is a matter which needs further investigation

    Reversible and Irreversible Effects of Temperature on Amelogenesis of Hamster Tooth Germs In Vitro

    Get PDF
    Hamster first hamster molar tooth germs in early secretory stage of amelogenesis were cultured for one day in vitro at 6°C, 22°C, 37°C or 45°C in the presence of 3H-proline, 45Ca and 32P-orthophosphate. Other explants were cultured without these labels and after culture examined by histology. The highest temperature tested was lethal to the explants, decreased total dry weight and rapidly increased total uptake of the radio-labelled mineral ions, probably merely due to physicochemical modification of the existing preculture minerals. Optimal synthesis and secretion of amelogenins were measured at physiological temperature (37°C). Effects of exposure to both temperatures below the physiological value were virtually reversible when explants were grown at physiological temperature (37°C) for another day. However, amelogenin secretion during this recovery period did not reach values as high as those found for the first day in explants initially grown at physiological temperature during the first day. We concluded from the four temperatures examined that the optimal temperature for enamel matrix deposition in vitro was 37°C. At this temperature enamel biosynthesis and its secretion are high. Lowering the temperature slows down the metabolism without any apparent harmful effect. Normal development of the tooth explants in vitro resumes when the culture temperature is restored to physiological levels (37°C). For temporary storage of tooth germ explants prior to any reimplantation, we therefore recommend a temperature of 6°C

    Effect of thrombin peptide 508 (TP508) on bone healing during distraction osteogenesis in rabbit tibia

    Get PDF
    Thrombin-related peptide 508 (TP508) accelerates bone regeneration during distraction osteogenesis (DO). We have examined the effect of TP508 on bone regeneration during DO by immunolocalization of Runx2 protein, a marker of osteoblast differentiation, and of osteopontin (OPN) and bone sialoprotein (BSP), two late markers of the osteoblast lineage. Distraction was performed in tibiae of rabbits over a period of 6 days. TP508 (30 or 300 μg) or vehicle was injected into the distraction gap at the beginning and end of the distraction period. Two weeks after active distraction, tissue samples were harvested and processed for immunohistochemical analysis. We also tested the in vitro effect of TP508 on Runx2 mRNA expression in osteoblast-like (MC3T3-E1) cells by polymerase chain reaction analysis. Runx2 and OPN protein were observed in preosteoblasts, osteoblasts, osteocytes of newly formed bone, blood vessel cells and many fibroblast-like cells of the soft connective tissue. Immunostaining for BSP was more restricted to osteoblasts and osteocytes. Significantly more Runx2- and OPN-expressing cells were seen in the group treated with 300 μg TP508 than in the control group injected with saline or with 30 μg TP508. However, TP508 failed to increase Runx2 mRNA levels significantly in MC3T3-E1 cells after 2–3 days of exposure. Our data suggest that TP508 enhances bone regeneration during DO by increasing the proportion of cells of the osteoblastic lineage. Clinically, TP508 may shorten the healing time during DO; this might be of benefit when bone regeneration is slow

    The effect of fluoride on enamel and dentin formation in the uremic rat incisor

    Get PDF
    Renal impairment in children is associated with tooth defects that include enamel pitting and hypoplasia. However, the specific effects of uremia on tooth formation are not known. In this study, we used rat mandibular incisors, which continuously erupt and contain all stages of tooth formation, to characterize the effects of uremia on tooth formation. We also tested the hypothesis that uremia aggravates the fluoride (F)-induced changes in developing teeth. Rats were subjected to a two-stage 5/6 nephrectomy or sham operation and then exposed to 0 (control) or 50 ppm NaF in drinking water for 14 days. The effects of these treatments on food intake, body growth rate, and biochemical serum parameters for renal function and calcium metabolism were monitored. Nephrectomy reduced food intake and weight gain. Intake of F by nephrectomized rats increased plasma F levels twofold and further decreased food intake and body weight gain. Uremia affected formation of dentin and enamel and was more extensive than the effect of F alone. Uremia also significantly increased predentin width and induced deposition of large amounts of osteodentin-like matrix-containing cells in the pulp chamber. In enamel formation, the cells most sensitive to uremia were the transitional-stage ameloblasts. These data demonstrate that intake of F by rats with reduced renal function impairs F clearance from the plasma and aggravates the already negative effects of uremia on incisor tooth development

    Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis

    Get PDF
    Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF). Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model.). are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse

    Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study

    Get PDF
    Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results: The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion: enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis
    • …
    corecore