3,407 research outputs found
Influence of polarizability on metal oxide properties studied by molecular dynamics simulations
We have studied the dependence of metal oxide properties in molecular
dynamics (MD) simulations on the polarizability of oxygen ions. We present
studies of both liquid and crystalline structures of silica (SiO2), magnesia
(MgO) and alumina (Al2O3). For each of the three oxides, two separately
optimized sets of force fields were used: (i) Long-range Coulomb interactions
between oxide and metal ions combined with a short-range pair potential. (ii)
Extension of force field (i) by adding polarizability to the oxygen ions. We
show that while an effective potential of type (i) without polarizable oxygen
ions can describe radial distributions and lattice constants reasonably well,
potentials of type (ii) are required to obtain correct values for bond angles
and the equation of state. The importance of polarizability for metal oxide
properties decreases with increasing temperature.Comment: 8 pages, 7 figure
Understanding long-time vacancy aggregation in iron: a kinetic activation-relaxation technique study
Vacancy diffusion and clustering processes in body-centered-cubic (bcc) Fe
are studied using the kinetic activation-relaxation technique (k-ART), an
off-lattice kinetic Monte Carlo method with on-the-fly catalog building
capabilities. For monovacancies and divacancies, k-ART recovers previously
published results while clustering in a 50-vacancy simulation box agrees with
experimental estimates. Applying k-ART to the study of clustering pathways for
systems containing from one to six vacancies, we find a rich set of diffusion
mechanisms. In particular, we show that the path followed to reach a
hexavacancy cluster influences greatly the associated mean-square displacement.
Aggregation in a 50-vacancy box also shows a notable dispersion in relaxation
time associated with effective barriers varying from 0.84 to 1.1 eV depending
on the exact pathway selected. We isolate the effects of long-range elastic
interactions between defects by comparing to simulations where those effects
are deliberately suppressed. This allows us to demonstrate that in bcc Fe,
suppressing long-range interactions mainly influences kinetics in the first 0.3
ms, slowing down quick energy release cascades seen more frequently in full
simulations, whereas long-term behavior and final state are not significantly
affected.Comment: 11 pages, 12 figures. Updated to post-review manuscrip
A data-driven method for Higgs boson analyses in di-τ final states for the LHC Run II and beyond
Das τ-Embedding ist eine datenbasierte Methode zur Abschätzung des Beitrags von Prozessen mit zwei τ-Leptonen im Ereignis. Die Methode verwendet einen ereignisbasier- ten Ansatz, bei dem zwei rekonstruierte Myonen in den Daten ausgewählt werden, die durch zwei simulierte τ-Leptonenzerfälle ersetzt werden. Das daraus resultierende Ereignis vereint die simulierten τ-Leptonenzerfälle mit einem sonst unveränderten Ereignis. Das τ-Embedding führt zu einer verbesserten Beschreibung der Eigenschaften von Jets und von Pile-up-Kollisionen. Es ist die wichtigste Abschätzungsmethode für Untergründe mit zwei τ-Leptonen im Endzustand innerhalb der CMS-Kollaboration und wurde in den letzten Jahren in zahlreichen Higgs-Boson-Analysen in ττ-Endzuständen angewendet.
In dieser Arbeit wird die neueste Implementierung der Methode beschrieben. In einem umfassenden, Analysebeispiel wird die Methode mit einem Modell verglichen, das auf vollständig simulierten Prozessen basiert. Mehr als 8 Millionen CPU-Stunden wurden auf- gewendet, um die neue Implementierung von τ-Embedding Ergebnisse für die LHC Run II Analysen zu erzeugen. Die vorgestellten Studien legen den Grundstein für die Verwendung von τ-Embedding in mehreren geplanten Higgs-Boson-Analysen in ττ-Endzuständen auf den kombinierten Datensätzen von Run II und III, die eines der wichtigsten Ergebnisse des LHC-Phase-1-Physikprogramms darstellen werden
Analyzing the Growing Islamic Radicalization in France
Islamic radicalization in European countries is becoming more and more prevalent, as evidenced by the number of recent attacks by Muslims in Europe. I argue that the social, religious, and psychological environment in France creates a unique opportunity for Islamic radicalization, particularly through social media and in prisons. After defining radicalization and explaining two radicalization processes as well as different types of radicals, I analyze the specific factors present in France that contribute to this radicalization. I use case study analysis to examine several French citizens who radicalized, either online or in prison, in order to show how the recruiter exacerbated the situation in France. Additionally, I evaluate primary sources from the Islamic State and the Levant, in order to show how it capitalizes on certain aspects of French society, such as the discriminatory laws banning the burka. I also apply both theories of radicalization, and analyze which one matches the processes found in the case studies and primary sources. My findings support my hypothesis that France is a unique case where Islamic radicalization is more easily achieved, and that the presence of a mentor is crucial in the radicalization process
Populatieontwikkeling wortelknobbelaaltjes in aardappel : Meloidogyne chitwoodi en M. fallax
PPO onderzocht de levenscyclus en ontwikkeling van de wortelknobbelaaltjes Meloidogyne chitwoodi (maïswortelknobbelaaltje) en M. fallax (bedrieglijk maïswortelknobbelaaltje) op aardappel, om vast te stellen hoeveel generaties van deze aaltjessoorten onder Nederlandse omstandigheden per groeiseizoen mogelijk zijn en welke generatie de nieuw gevormde knollen daadwerkelijk infecteert. Er worden minimaal twee generaties gevormd en de tweede generatie is verantwoordelijk voor de schade aan de knollen. Bestrijdingsstrategieën die uitgaan van het voorkomen van de tweede generatie juvenielen bieden de beste mogelijkhede
Uncertainty quantification for classical effective potentials: an extension to potfit
Effective potentials are an essential ingredient of classical molecular
dynamics (MD) simulations. Little is understood of the consequences of
representing the complex energy landscape of an atomic configuration by an
effective potential or force field containing considerably fewer parameters.
The probabilistic potential ensemble method has been implemented in the potfit
force matching code. This introduces uncertainty quantification into the
interatomic potential generation process. Uncertainties in the effective
potential are propagated through MD to obtain uncertainties in quantities of
interest, which are a measure of the confidence in the model predictions.
We demonstrate the technique using three potentials for nickel: two simple
pair potentials, Lennard-Jones and Morse, and a local density dependent
embedded atom method (EAM) potential. A potential ensemble fit to density
functional theory (DFT) reference data is constructed for each potential to
calculate the uncertainties in lattice constants, elastic constants and thermal
expansion. We quantitatively illustrate the cases of poor model selection and
fit, highlighted by the uncertainties in the quantities calculated. This shows
that our method can capture the effects of the error incurred in quantities of
interest resulting from the potential generation process without resorting to
comparison with experiment or DFT, which is an essential part to assess the
predictive power of MD simulations.Comment: 10 pages, 3 figure
Reducing the loss of genetic diversity associated with assisted colonization -like introductions of animals
Peer reviewe
A Hybrid Decomposition Parallel Implementation of the Car-Parrinello Method
We have developed a flexible hybrid decomposition parallel implementation of
the first-principles molecular dynamics algorithm of Car and Parrinello. The
code allows the problem to be decomposed either spatially, over the electronic
orbitals, or any combination of the two. Performance statistics for 32, 64, 128
and 512 Si atom runs on the Touchstone Delta and Intel Paragon parallel
supercomputers and comparison with the performance of an optimized code running
the smaller systems on the Cray Y-MP and C90 are presented.Comment: Accepted by Computer Physics Communications, latex, 34 pages without
figures, 15 figures available in PostScript form via WWW at
http://www-theory.chem.washington.edu/~wiggs/hyb_figures.htm
Dislocation dynamics in Ni-based superalloys: Parameterising dislocation trajectories from atomistic simulations
Nanoscale precipitates in the microstructure of nickel-based superalloys
hinder dislocation motion, which results in an extraordinary strengthening
effect at elevated temperatures. We used molecular dynamics (MD) with classical
effective potential to observe the movement of an
edge dislocation under shear in pure Ni,
which represents the Ni solid solution matrix, and extracted the locations of
the dislocations. We show how a Differential Evolution Monte Carlo (DE-MC)
analysis is an effective way to find the parameters of an equation of motion
for the dislocation lines with quantified uncertainties. The parameters of
interest were the effective mass, drag coefficient, and force experienced by
the dislocation. The marginal parameter and joint posterior distributions were
estimated from the accepted samples produced by the DE-MC algorithm. The
equation of motion and parameter distributions were used to predict the
dislocation positions and velocities at the simulation timesteps, and the mean
fit was found to match the MD trajectories with a root mean square error (RMSE)
of \SI{0.2}{\nano\metre}. We also discuss how the selected model can be
extended to account for the presence of multiple dislocations as well as
dislocation-precipitate interactions. This work serves as the first step
towards building a predictive surrogate model that describes the deformation
behaviour of Ni-based superalloys.Comment: 19 pages, 7 figure
- …