58 research outputs found

    Compressive ghost imaging

    Full text link
    We describe an advanced image reconstruction algorithm for pseudothermal ghost imaging, reducing the number of measurements required for image recovery by an order of magnitude. The algorithm is based on compressed sensing, a technique that enables the reconstruction of an N-pixel image from much less than N measurements. We demonstrate the algorithm using experimental data from a pseudothermal ghost-imaging setup. The algorithm can be applied to data taken from past pseudothermal ghost-imaging experiments, improving the reconstruction's quality.Comment: Comments are welcom

    Quantum Correlations in Two-Particle Anderson Localization

    Full text link
    We predict the quantum correlations between non-interacting particles evolving simultaneously in a disordered medium. While the particle density follows the single-particle dynamics and exhibits Anderson localization, the two-particle correlation develops unique features that depend on the quantum statistics of the particles and their initial separation. On short time scales, the localization of one particle becomes dependent on whether the other particle is localized or not. On long time scales, the localized particles show oscillatory correlations within the localization length. These effects can be observed in Anderson localization of non-classical light and ultra-cold atoms.Comment: 4 pages, 4 figures, comments welcom

    Development of a density inversion in driven granular gases

    Full text link
    Granular materials fluidized by a rapidly vibrating bottom plate often develop a fascinating density inversion: a heavier layer of granulate supported by a lower-density region. We employ the Navier-Stokes granular hydrodynamics to follow a density inversion as it develops in time. Assuming a dilute low-Mach-number flow, we derive a reduced time-dependent model of the late stage of the dynamics. The model looks especially simple in the Lagrangian coordinates. The time-dependent solution describes the growth of a density peak at an intermediate height. A transient temperature minimum is predicted to develop in the region of the density peak. The temperature minimum disappears at later times, as the system approaches the steady state. At late times, the predictions of the low-Mach-number model are in good agreement with a numerical solution of the full hydrodynamic equations. At an early stage of the dynamics, pressure oscillations are predicted.Comment: 13 pages, 6 figures. To appear in "Granular Gas Dynamics", ed. by T. Poeschel and N. Brilliantov, vol. 624 of "Lecture Notes in Physics", Springe

    Bloch oscillations of Path-Entangled Photons

    Full text link
    We show that when photons in N-particle path entangled |N,0> + |0,N> state undergo Bloch oscillations, they exhibit a periodic transition between spatially bunched and antibunched states. The transition occurs even when the photons are well separated in space. We study the scaling of the bunching-antibunching period, and show it is proportional to 1/N.Comment: An error in figure 1b of the original manuscript was corrected, and the period λB\lambda_B was redefine

    Spectral Polarization and Spectral Phase Control of Time and Energy Entangled Photons

    Get PDF
    We demonstrate a scheme to spectrally manipulate a collinear, continuous stream of time and energy entangled photons to generate beamlike, bandwidth-limited fuxes of polarization-entangled photons with nearly-degenerate wavelengths. Utilizing an ultrashort-pulse shaper to control the spectral phase and polarization of the photon pairs, we tailor the shape of the Hong-Ou-Mandel interference pattern, demonstrating the rules that govern the dependence of this interference pattern on the spectral phases of the photons. We then use the pulse shaper to generate all four polarization Bell states. The singlet state generated by this scheme forms a very robust decoherence-free subspace, extremely suitable for long distance fiber-optics based quantum communication.Comment: 5 pages, 3 figure

    Quantum Walk of Two Interacting Bosons

    Full text link
    We study the effect of interactions on the bosonic two-particle quantum walk and its corresponding spatial correlations. The combined effect of interactions and Hanbury-Brown Twiss interference results in unique spatial correlations which depend on the strength of the interaction, but not on its sign. The results are explained in light of the two-particle spectrum and the physics of attractively and repulsively bound pairs. We experimentally measure the weak interaction limit of these effects in nonlinear photonic lattices. Finally, we discuss an experimental approach to observe the strong interaction limit using single atoms in optical lattices.Comment: 4 pages, 5 figures. Comments wellcom

    Resource-efficient photonic quantum computation with high-dimensional cluster states

    Full text link
    Quantum computers can revolutionize science and technology, but their realization remains challenging across all platforms. A promising route to scalability is photonic measurement-based quantum computation, where single-qubit measurements on large cluster states, together with feedforward, enable fault-tolerant quantum computation. However, generating large cluster states at high rates is notoriously difficult, as detection probabilities drop exponentially with the number of photons comprising the state. We tackle this challenge by encoding multiple qubits on each photon through high-dimensional spatial encoding, generating cluster states with over nine qubits at a rate of 100Hz. Additionally, we demonstrate that high-dimensional encoding substantially reduces the computation duration by enabling instantaneous feedforward between qubits encoded in the same photon. Our findings pave the way for resource-efficient measurement-based quantum computation using high-dimensional entanglement
    • …
    corecore