21 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

    No full text
    We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between and , with a total observational time of . The search targets gravitational wave transients of 10–500 s duration in a frequency band of 24–2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least ∼10−8 in gravitational waves

    Spectroscopy with Lasers

    No full text

    Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run

    No full text
    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background

    Search for Gravitational Waves Associated with Gamma-Ray Bursts During the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    20 pages, 6 figures, 3 tables, see paper for full list of authorsInternational audienceWe present the results of the search for gravitational waves (GWs) associated with gamma-ray bursts (GRBs) detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), which took place between September 12, 2015 and January 19, 2016. We perform a modeled search for coalescences of either two neutron stars (NSs) or an NS and a stellar-mass black hole (BH), and a search for unmodeled GW transients using minimal assumptions about the signal morphology. We search for GW signals associated with the 41 GRBs for which LIGO data are available with sufficient duration. We find no evidence of a GW signal for any of them. For all GRBs, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 10−2M⊙c2 were emitted at a given frequency, and find a median 90% confidence limit of 71Mpc at 150Hz. For the subset of 19 short-hard GRBs, we place lower bounds on distance with a median 90% confidence limit of 90Mpc for NS-NS coalescences, and 150Mpc and 139Mpc for NS-BH coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These distance limits are higher than any other ones placed by previous GW searches. Further, we discuss in detail the results of the search for GWs associated with GRB 150906B, a GRB that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 54Mpc (z=0.0124). Assuming the gamma-ray emission is beamed with a jet half-opening angle ≤30∘, we exclude an NS-NS and an NS-BH in NGC 3313 as the progenitor of this event with confidence >99%. In addition, under the same assumption for the jet half-opening angle, we found no evidence for an NS-NS and an NS-BH GW signal associated with GRB 150906B up to a distance of 102Mpc and 170Mpc, respectively

    Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    No full text
    We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0, +0.1] x 10(-8) Hz/s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run 01. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h 0 is similar to 4 x 10(-25) near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 x 10(-24) . For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is similar to 1.5 x 10(-25

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    No full text
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of genetically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Omega(T)(0) < 5.58 x 10(-8), Omega(V)(0) < 6.35 x 10(-8), and Omega(S)(0) < 1.08 x 10(-7) at a reference frequency f(0) = 25 Hz

    GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    No full text
    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of - + 12 2 M 7 and - +7 2 M 2 (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is - + 340 Mpc 140 140 , corresponding to redshift - + 0.07 0.03 0.03. We verify that the signal waveform is consistent with the predictions of general relativity
    corecore