81 research outputs found
Fingering a Murderer: A Successful Anthropological and Radiological Collaboration
We illustrate an interdisciplinary approach to identify a victim in a case with complex taphonomic and procedural issues. Burning, fragmentation, species commingling, and examination by multiple experts required anthropological preparation and analysis combined with radio- graphic adaptations to image and match trabecular patterns in unusually small, burned specimens. A missing person was last seen in the company of a reclusive female on a remote rural property. A warranted search found several burn sites containing human and animal bones. Fragment prepara- tion, analysis, and development of a biological profile by anthropologists enabled examination by the odontologist, molecular biologist, and radiolo- gist, and justified use of antemortem radiographs from one potential victim. Visual and radiological comparison resulted in a positive (later confirmed) identification of the victim by radiological matches of three carpal phalanges. Although some dimensional changes are expected with burning, morphological details were preserved, aided by selection of relatively intact, small bones for comparison
First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan
<p>Abstract</p> <p>Background</p> <p>Agrochemicals have been widely used in Pakistan for several years. This exposes mosquito populations, particularly those present around agricultural settings, to an intense selection pressure for insecticide resistance. The aim of the present study was to investigate the toxicity of representative agrochemicals against various populations of <it>Aedes albopictus </it>(Skuse) collected from three different regions from 2008-2010.</p> <p>Results</p> <p>For organophosphates and pyrethroids, the resistance ratios compared with susceptible Lab-PK were in the range of 157-266 fold for chlorpyrifos, 24-52 fold for profenofos, 41-71 fold for triazofos, and 15-26 fold for cypermethrin, 15-53 fold for deltamethrin and 21-58 fold for lambdacyhalothrin. The resistance ratios for carbamates and new insecticides were in the range of 13-22 fold for methomyl, 24-30 fold for thiodicarb, and 41-101 fold for indoxacarb, 14-27 fold for emamectin benzoate and 23-50 fold for spinosad. Pair wise comparisons of the log LC<sub>50s </sub>of insecticides revealed correlation among several insecticides, suggesting a possible cross resistance mechanism. Moreover, resistance remained stable across 3 years, suggesting field selection for general fitness had also taken place for various populations of <it>Ae. albopictus</it>.</p> <p>Conclusion</p> <p>Moderate to high level of resistance to agrochemicals in Pakistani field populations of <it>Ae. albopictus </it>is reported here first time. The geographic extent of resistance is unknown but, if widespread, may lead to problems in future vector control.</p
Genetic population structure of Anopheles gambiae in Equatorial Guinea
BACKGROUND: Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and Annobón, and from continental Equatorial Guinea (EG) and Gabon. METHODS: Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobón) and three mainland samples (two in EG and one in Gabon). Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. RESULTS: High levels of genetic differentiation were found between the more geographically remote island of Annobón and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. CONCLUSION: The observed patterns of population structure seem to be governed by the presence of both physical (the ocean) and biological (the M-S form discontinuity) barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed
Male mating biology
Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings are successful. Previous failures in mosquito sterile insect technique (SIT) projects have been linked to poor knowledge of local mating behaviours or the selection of deleterious phenotypes during colonisation and long-term mass rearing. Careful selection of mating characteristics must be combined with intensive field trials to ensure phenotypic characters are not antagonistic to longevity, dispersal, or mating behaviours in released males. Success has been achieved, even when colonised vectors were less competitive, due in part to extensive field trials to ensure mating compatibility and effective dispersal. The study of male mating biology in other dipterans has improved the success of operational SIT programmes. Contributing factors include inter-sexual selection, pheromone based attraction, the ability to detect alterations in local mating behaviours, and the effects of long-term colonisation on mating competitiveness. Although great strides have been made in other SIT programmes, this knowledge may not be germane to anophelines, and this has led to a recent increase in research in this area
Can fungal biopesticides control malaria?
Recent research has raised the prospect of using insect fungal pathogens for the control of vector-borne diseases such as malaria. In the past, microbial control of insect pests in both medical and agricultural sectors has generally had limited success. We propose that it may now be possible to produce a cheap, safe and green tool for the control of malaria which, in contrast to most chemical insecticides, will not eventually be rendered useless by resistance evolution. Realising this potential will require lateral thinking by biologists, technologists and development agencie
- …