1,320 research outputs found
Enhancements to the STAGS computer code
The power of the STAGS family of programs was greatly enhanced. Members of the family include STAGS-C1 and RRSYS. As a result of improvements implemented, it is now possible to address the full collapse of a structural system, up to and beyond critical points where its resistance to the applied loads vanishes or suddenly changes. This also includes the important class of problems where a multiplicity of solutions exists at a given point (bifurcation), and where until now no solution could be obtained along any alternate (secondary) load path with any standard production finite element code
Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate
Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at
high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new
compact continuum sources. Three of the new sources are coincident with
previously-identified water masers. Together with the previously-known sources,
these data bring the number of likely protocluster members to 25 for a
protostellar density of ~700 pc^-3. Our preliminary measurement of the
Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a
uniform volume distribution. All of the (nine) sources with detections at
multiple frequencies have SEDs consistent with dust emission, and two (SMA1b
and SMA4) also have long wavelength emission consistent with a central
hypercompact HII region. Thermal spectral line emission, including CH3CN, is
detected in six sources: LTE model fitting of CH3CN(J=12-11) yields
temperatures of 72-373K, confirming the presence of multiple hot cores. The
fitted LSR velocities range from -3.3 to -7.0 km/s, with an unbiased mean
square deviation of 2.05 km/s, implying a dynamical mass of 410+-260 Msun for
the protocluster. From analysis of a wide range of hot core molecules, the
kinematics of SMA1b are consistent with a rotating, infalling Keplerian disk of
diameter 800AU and enclosed mass of 10-30 Msun that is perpendicular (within 1
degree) to the large-scale bipolar outflow axis. A companion to SMA1b at a
projected separation of 0.45" (590AU; SMA1d), which shows no evidence of
spectral line emission, is also confirmed. Finally, we detect one 218.440GHz
and several 229.7588GHz Class-I methanol masers.Comment: 54 pages, 11 figures. Accepted for publication in The Astrophysical
Journal. Version 2: Keywords updated, and three "in press" citations updated
to journal reference. Version 3: corrected the error in the quantum numbers
of the 218 GHz methanol transition in the text and in Table 8. For a PDF
version with full-resolution figures, see
http://www.cv.nrao.edu/~thunter/papers/ngc6334in2014.pd
A practical approach to refractory Kawasaki disease
Kawasaki disease (KD) is a medium vessel vasculitis and is the most common cause of acquired heart disease in childhood. If left untreated, KD leads to coronary artery aneurysms in 15–25% of patients and the mortality rate in the UK is currently 0.4%. As such, KD is an important preventable cause of heart disease in the young. The aetiology of KD remains unknown, but most likely it represents an aberrant inflammatory host response to one or more as yet unidentified immunological trigger(s) in genetically predisposed individuals. The purpose of this article is not to provide an exhaustive review of KD. Rather we provide practical guidance to the clinical approach to refractory KD. Only brief background on the pathogenesis and epidemiology of KD, and emerging newer clinical trials is provided, to place our clinical approach in context
First Results from a 1.3 cm EVLA Survey of Massive Protostellar Objects: G35.03+0.35
We have performed a 1.3 centimeter survey of 24 massive young stellar objects
(MYSOs) using the Expanded Very Large Array (EVLA). The sources in the sample
exhibit a broad range of massive star formation signposts including Infrared
Dark Clouds (IRDCs), UCHII regions, and extended 4.5 micron emission in the
form of Extended Green Objects (EGOs). In this work, we present results for
G35.03+0.35 which exhibits all of these phenomena. We simultaneously image the
1.3 cm ammonia (1,1) through (6,6) inversion lines, four methanol transitions,
two H recombination lines, plus continuum at 0.05 pc resolution. We find three
areas of thermal ammonia emission, two within the EGO (designated the NE and SW
cores) and one toward an adjacent IRDC. The NE core contains an UCHII region
(CM1) and a candidate HCHII region (CM2). A region of non-thermal, likely
masing ammonia (3,3) and (6,6) emission is coincident with an arc of 44 GHz
methanol masers. We also detect two new 25 GHz Class I methanol masers. A
complementary Submillimeter Array 1.3 mm continuum image shows that the
distribution of dust emission is similar to the lower-lying ammonia lines, all
peaking to the NW of CM2, indicating the likely presence of an additional MYSO
in this protocluster. By modeling the ammonia and 1.3 mm continuum data, we
obtain gas temperatures of 20-220 K and masses of 20-130 solar. The diversity
of continuum emission properties and gas temperatures suggest that objects in a
range of evolutionary states exist concurrently in this protocluster.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA.
16 pages, 3 figures. Includes the complete version of Figure 3, which was
unable to fit into the journal article due to the number of panel
The Protocluster G18.67+0.03: A Test Case for Class I Methanol Masers as Evolutionary Indicators for Massive Star Formation
We present high angular resolution Submillimeter Array (SMA) and Karl G.
Jansky Very Large Array (VLA) observations of the massive protocluster
G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green
Objects (EGOs), this cluster contains three Class I methanol maser sources,
providing a unique opportunity to test the proposed role of Class I masers as
evolutionary indicators for massive star formation. The millimeter observations
reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated
with all three Class I maser sources. Two of these sources (including the EGO)
are also associated with 6.7 GHz Class II methanol masers; the Class II masers
are coincident with millimeter continuum cores that exhibit hot core line
emission and drive active outflows, as indicated by the detection of SiO(5-4).
In these cases, the Class I masers are coincident with outflow lobes, and
appear as clear cases of excitation by active outflows. In contrast, the third
Class I source is associated with an ultracompact HII region, and not with
Class II masers. The lack of SiO emission suggests the 13CO outflow is a relic,
consistent with its longer dynamical timescale. Our data show that massive
young stellar objects associated only with Class I masers are not necessarily
young, and provide the first unambiguous evidence that Class I masers may be
excited by both young (hot core) and older (UC HII) MYSOs within the same
protocluster.Comment: Astrophysical Journal Letters, accepted. emulateapj, 7 pages
including 4 figures and 1 table. Figures compressed. v2: coauthor affiliation
updated, emulateapj versio
VLA Observations of the Infrared Dark Cloud G19.30+0.07
We present Very Large Array observations of ammonia (NH3) (1,1), (2,2), and
CCS (2_1-1_0) emission toward the Infrared Dark Cloud (IRDC) G19.30+0.07 at
~22GHz. The NH3 emission closely follows the 8 micron extinction. The NH3 (1,1)
and (2,2) lines provide diagnostics of the temperature and density structure
within the IRDC, with typical rotation temperatures of ~10 to 20K and NH3
column densities of ~10^15 cm^-2. The estimated total mass of G19.30+0.07 is
~1130 Msun. The cloud comprises four compact NH3 clumps of mass ~30 to 160
Msun. Two coincide with 24 micron emission, indicating heating by protostars,
and show evidence of outflow in the NH3 emission. We report a water maser
associated with a third clump; the fourth clump is apparently starless. A
non-detection of 8.4GHz emission suggests that the IRDC contains no bright HII
regions, and places a limit on the spectral type of an embedded ZAMS star to
early-B or later. From the NH3 emission we find G19.30+0.07 is composed of
three distinct velocity components, or "subclouds." One velocity component
contains the two 24 micron sources and the starless clump, another contains the
clump with the water maser, while the third velocity component is diffuse, with
no significant high-density peaks. The spatial distribution of NH3 and CCS
emission from G19.30+0.07 is highly anti-correlated, with the NH3 predominantly
in the high-density clumps, and the CCS tracing lower-density envelopes around
those clumps. This spatial distribution is consistent with theories of
evolution for chemically young low-mass cores, in which CCS has not yet been
processed to other species and/or depleted in high-density regions.Comment: 29 pages, 9 figures, accepted for publication by ApJ. Please contact
the authors for higher resolution versions of the figure
- …