27 research outputs found

    Spontaneous changes in intermediate filament protein expression patterns in lung cancer cell lines

    Get PDF
    The usefulness of cell lines in the study and prediction of the clinical behaviour of lung cancer is still a matter of debate. However, lung tumour cell cultures have been of value in investigations concerning molecular and cell biological aspects of these neoplasms. Especially in the examination of characteristics specific for the main types of differentiation (squamous cell carcinoma, adenocarcinoma, small cell carcinoma), in vitro studies have been most important. Twenty eight lung cancer cell lines were cultured for up to four years, and were examined at regular intervals for their intermediate filament protein (IFP) expression patterns using a panel of cytokeratin (CK) and neurofilament (NF) antibodies. These studies showed that the classic type of small cell lung cancer (SCLC) cell lines contain CKs 8, 18, and occasionally CK 19, while the variant-type SCLC cell lines generally express no CKs but can contain NFs. Non-SCLC cell lines, such as squamous cell carcinoma and adenocarcinoma cell lines, contain CKs 7 (in most cases), 8, 18 and 19. In one variant SCLC cell line and in one adenocarcinoma cell line CKs 4, 10 and 13, characteristic of squamous cell differentiation, were found. Although most cell lines have remained stable with respect to growth characteristics and IFP expression patterns, five lung cancer cultures exhibited a transition from one cell type to another, paralleled by changes in IFP expression. Progressions from classic to variant SCLC cell lines have been observed, next to conversions from variant SCLC to cell lines re-expressing cytokeratins. In some cases this resulted in a coexpression of CKs and NFs within a cell line and even within individual tumour cells. These results strongly support the earlier finding that CK expression in SCLC cell lines is a reliable marker for the classic type of differentiation, while the absence of CKs and the presence of NFs marks the variant type of differentiation. Our results are discussed in view of previous histological findings

    Reorganization of the nuclear lamina and cytoskeleton in adipogenesis

    Get PDF
    A thorough understanding of fat cell biology is necessary to counter the epidemic of obesity. Although molecular pathways governing adipogenesis are well delineated, the structure of the nuclear lamina and nuclear-cytoskeleton junction in this process are not. The identification of the ‘linker of nucleus and cytoskeleton’ (LINC) complex made us consider a role for the nuclear lamina in adipose conversion. We herein focused on the structure of the nuclear lamina and its coupling to the vimentin network, which forms a cage-like structure surrounding individual lipid droplets in mature adipocytes. Analysis of a mouse and human model system for fat cell differentiation showed fragmentation of the nuclear lamina and subsequent loss of lamins A, C, B1 and emerin at the nuclear rim, which coincides with reorganization of the nesprin-3/plectin/vimentin complex into a network lining lipid droplets. Upon 18 days of fat cell differentiation, the fraction of adipocytes expressing lamins A, C and B1 at the nuclear rim increased, though overall lamin A/C protein levels were low. Lamin B2 remained at the nuclear rim throughout fat cell differentiation. Light and electron microscopy of a subcutaneous adipose tissue specimen showed striking indentations of the nucleus by lipid droplets, suggestive for an increased plasticity of the nucleus due to profound reorganization of the cellular infrastructure. This dynamic reorganization of the nuclear lamina in adipogenesis is an important finding that may open up new venues for research in and treatment of obesity and nuclear lamina-associated lipodystrophy

    Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments

    No full text
    The aim of cardiovascular regeneration is to mimic the biological and mechanical functioning of tissues. For this it is crucial to recapitulate the in vivo cellular organization, which is the result of controlled cellular orientation. Cellular orientation response stems from the interaction between the cell and its complex biophysical environment. Environmental biophysical cues are continuously detected and transduced to the nucleus through entwined mechanotransduction pathways. Next to the biochemical cascades invoked by the mechanical stimuli, the structural mechanotransduction pathway made of focal adhesions and the actin cytoskeleton can quickly transduce the biophysical signals directly to the nucleus. Observations linking cellular orientation response to biophysical cues have pointed out that the anisotropy and cyclic straining of the substrate influence cellular orientation. Yet, little is known about the mechanisms governing cellular orientation responses in case of cues applied separately and in combination. This review provides the state-of-the-art knowledge on the structural mechanotransduction pathway of adhesive cells, followed by an overview of the current understanding of cellular orientation responses to substrate anisotropy and uniaxial cyclic strain. Finally, we argue that comprehensive understanding of cellular orientation in complex biophysical environments requires systematic approaches based on the dissection of (sub)cellular responses to the individual cues composing the biophysical niche

    Cellular strain avoidance is mediated by a functional actin cap - observations in an Lmna-deficient cell model

    No full text
    In adherent cells, the relevance of a physical mechanotransduction pathway provided by the perinuclear actin cap stress fibers has recently emerged. Here, we investigate the impact of a functional actin cap on the cellular adaptive response to topographical cues and uniaxial cyclic strain. Lmna-deficient fibroblasts are used as a model system because they do not develop an intact actin cap, but predominantly form a basal layer of actin stress fibers underneath the nucleus. We observe that topographical cues induce alignment in both normal and Lmna-deficient fibroblasts, suggesting that the topographical signal transmission occurs independently of the integrity of the actin cap. By contrast, in response to cyclic uniaxial strain, Lmna-deficient cells show a compromised strain avoidance response, which is completely abolished when topographical cues and uniaxial strain are applied along the same direction. These findings point to the importance of an intact and functional actin cap in mediating cellular strain avoidance.</p

    The 180 splice variant of NCAM-containing exon 18-is specifically expressed in small cell lung cancer cells

    No full text
    Background: The Neural Cell Adhesion Molecule (NCAM) is a glycoprotein expressed as 120, 140 and/or 180 kDa isoforms, all derived through alternative splicing of a single gene. NCAM 120 contains no intracellular domain, whereas NCAM 140 and 180 have different intracellular domains determined by alternative splicing of exon 18. NCAM has been described as a biomarker to discriminate small cell lung cancer (SCLC) from non-SCLC (NSCLC). However, peripheral blood mononuclear cells (PBMC) also express NCAM. We studied the expression of NCAM splice variants in cell lines, tumor tissues and control cells. Methods: Using reverse transcriptase-PCR we evaluated the expression of NCAM exon 18 splice variants in lung cancers cell lines, control cell lines, PBMC of healthy controls and SCLC tissue. In addition we studied the expression of the NCAM exon 18 encoded protein (E18) in SCLC by immunocytochemistry and flow cytometry using an E18-specific monoclonal antibody obtained by hybridoma fusion of E18-immunized mouse spleen cells. Finally we looked at immune responses to E18 in mice. Results: We found expression of RNA encoding the NCAM 180 variant in all SCLC cell lines. NCAM exon 18 was not expressed in 23/28 (82%) of the other tumor and leukemia cell lines tested and PBMC. Next, we also evaluated the expression of NCAM exon 18 in human SCLC tissue. Expression of NCAM exon 18 in 8 of the 10 (80%) SCLC biopsy samples was found. The newly raised E18-specific antibodies stained NCAM at the adherent junctions between adjacent cells in SCLC cell lines. The data demonstrate the intracellular location of E18 in SCLC. Furthermore, a specific cytotoxic T cell (CTL) response and significant antibody titers were found in mice upon immunization with recombinant E18 and its encoding DNA. Conclusions: The results of this study can be applied in the diagnosis and immunotherapy of SCLC. A larger study investigating E18 as a marker for SCLC is indicated

    The Rat Cytomegalovirus R33-Encoded G Protein-Coupled Receptor Signals in a Constitutive Fashion

    Get PDF
    The rat cytomegalovirus (RCMV) R33 gene is conserved among all betaherpesviruses and encodes a protein (pR33) that shows sequence similarity with chemokine-binding G protein-coupled receptors (GPCRs). Previously, the physiological significance of the R33 gene was demonstrated by the finding that an RCMV strain with R33 deleted is severely attenuated in vivo and is unable to either enter or replicate in the salivary glands of infected rats. Here, we report that RCMV pR33 is expressed as a functional GPCR that signals in an agonist-independent manner in both COS-7 and Rat2 cells. Transient expression of pR33 in COS-7 cells results in constitutive activation of phospholipase C (PLC) due to coupling to G proteins of the G(q) class. Interestingly, PLC activation is partially inhibited by cotransfection with G(α)-transducin subunits, which indicates the involvement of G(βγ) as well as Gα subunits in pR33-mediated signaling. Surprisingly, PLC activation is also partially inhibited by addition of pertussis toxin (PTX), suggesting that pR33 activates not only G(q) but also G(i/0) proteins. The constitutive activation of G(i/0) proteins by pR33 is further demonstrated by the PTX-sensitive decrease of CRE-mediated transcription and the PTX-sensitive increase of both NF-κB- and SRE-mediated transcription. In contrast to its homolog of human herpesvirus 6B (pU12), pR33 does not bind RANTES
    corecore