314 research outputs found
Identification of women with an increased risk of developing radiation-induced breast cancer: A case only study
Introduction: Radiation exposure at a young age is one of the strongest risk factors for breast cancer. Germline mutations in genes involved in the DNA-damage repair pathway (DDRP) may render women more susceptible to radiation-induced breast cancer. Methods: We evaluated the contribution of germline mutations in the DDRP genes BRCA1, BRCA2, CHEK2 and ATM to the risk of radiation-induced contralateral breast cancer (CBC). The germline mutation frequency was assessed, in a case-only study, in women who developed a CBC after they had a first breast cancer diagnosed before the age of 50 years, and who were (n = 169) or were not (n = 78) treated with radiotherapy for their first breast tumour. Results: We identified 27 BRCA1, 5 BRCA2, 15 CHEK2 and 4 truncating ATM germline mutation carriers among all CBC patients tested (21%). The mutation frequency was 24.3% among CBC patients with a history of radiotherapy, and 12.8% among patients not irradiated for the first breast tumour (odds ratio 2.18 (95% confidence interval 1.03 to 4.62); p = 0.043). The association between DDRP germline mutation carriers and risk of radiation-induced CBC seemed to be strongest in women who developed their second primary breast tumour at least 5 years after radiotherapy. Th
Recommended from our members
Combined effects of single nucleotide polymorphisms TP53 R72P and MDM2 SNP309, and p53 expression on survival of breast cancer patients.
INTRODUCTION: Somatic inactivation of the TP53 gene in breast tumors is a marker for poor outcome, and breast cancer outcome might also be affected by germ-line variation in the TP53 gene or its regulators. We investigated the effects of the germ-line single nucleotide polymorphisms TP53 R72P (215G>C) and MDM2 SNP309 (-410T>G), and p53 protein expression in breast tumors on survival. METHODS: We pooled data from four breast cancer cohorts within the Breast Cancer Association Consortium for which both TP53 R72P and MDM2 SNP309 were genotyped and follow-up was available (n = 3,749). Overall and breast cancer-specific survival analyses were performed using Kaplan-Meier analysis and multivariate Cox's proportional hazards regression models. RESULTS: Survival of patients did not differ by carriership of either germ-line variant, R72P (215G>C) or SNP309 (-410G>T) alone. Immunohistochemical p53 staining of the tumor was available for two cohorts (n = 1,109 patients). Survival was worse in patients with p53-positive tumors (n = 301) compared to patients with p53-negative tumors (n = 808); breast cancer-specific survival: HR 1.6 (95% CI 1.2 to 2.1), P = 0.001. Within the patient group with p53-negative tumors, TP53 rare homozygous (CC) carriers had a worse survival than G-allele (GG/GC) carriers; actuarial breast cancer-specific survival 71% versus 80%, P = 0.07; HR 1.8 (1.1 to 3.1), P = 0.03. We also found a differential effect of combinations of the two germ-line variants on overall survival; homozygous carriers of the G-allele in MDM2 had worse survival only within the group of TP53 C-allele carriers; actuarial overall survival (GG versus TT/TG) 64% versus 75%, P = 0.001; HR (GG versus TT) 1.5 (1.1 to 2.0), P = 0.01. We found no evidence for a differential effect of MDM2 SNP309 by p53 protein expression on survival. CONCLUSIONS: The TP53 R72P variant may be an independent predictor for survival of patients with p53-negative tumors. The combined effect of TP53 R72P and MDM2 SNP309 on survival is in line with our a priori biologically-supported hypothesis, that is, the role of enhanced DNA repair function of the TP53 Pro-variant, combined with increased expression of the Mdm2 protein, and thus overall attenuation of the p53 pathway in the tumor cells.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Retrospective methods to estimate radiation dose at the site of breast cancer development after Hodgkin lymphoma radiotherapy.
BACKGROUND: An increased risk of breast cancer following radiotherapy for Hodgkin lymphoma (HL) has now been robustly established. In order to estimate the dose-response relationship more accurately, and to aid clinical decision making, a retrospective estimation of the radiation dose delivered to the site of the subsequent breast cancer is required. METHODS: For 174 Dutch and 170 UK female patients with breast cancer following HL treatment, the 3-dimensional position of the breast cancer in the affected breast was determined and transferred onto a CT-based anthropomorphic phantom. Using a radiotherapy treatment planning system the dose distribution on the CT-based phantom was calculated for the 46 different radiation treatment field set-ups used in the study population. The estimated dose at the centre of the breast cancer, and a margin to reflect dose uncertainty were determined on the basis of the location of the tumour and the isodose lines from the treatment planning. We assessed inter-observer variation and for 47 patients we compared the results with a previously applied dosimetry method. RESULTS: The estimated median point dose at the centre of the breast cancer location was 29.75Â Gy (IQR 5.8-37.2), or about 75% of the prescribed radiotherapy dose. The median dose uncertainty range was 5.97Â Gy. We observed an excellent inter-observer variation (ICC 0.89 (95% CI: 0.74-0.95)). The absolute agreement intra-class correlation coefficient (ICC) for inter-method variation was 0.59 (95% CI: 0.37-0.75), indicating (nearly) good agreement. There were no systematic differences in the dose estimates between observers or methods. CONCLUSION: Estimates of the dose at the point of a subsequent breast cancer show good correlation between methods, but the retrospective nature of the estimates means that there is always some uncertainty to be accounted for
The spectrum of ATM missense variants and their contribution to contralateral breast cancer
Heterozygous carriers of ATM mutations are at increased risk of breast cancer. In this case-control study, we evaluated the significance of germline ATM missense variants to the risk of contralateral breast cancer (CBC). We have determined the spectrum and frequency of ATM missense variants in 443 breast cancer patients diagnosed before age 50, including 247 patients who subsequently developed CBC. Twenty-one per cent of the women with unilateral breast cancer and 17% of the women with CBC had at least one ATM germline missense variant, indicating no significant difference in variant frequency between these two groups. We have found that carriers of an ATM missense mutation, who were treated with radiotherapy for the first breast tumour, developed their second tumour on average in a 92-month interval compared to a 136-month mean interval for those CBC patients who neither received RT nor carried a germline variant, (p = 0.029). Our results indicate that the presence of ATM variants does not have a major impact on the overall risk of CBC. However, the combination of RT and (certain) ATM missense variants seems to accelerate tumour development
The Tumor Immune Landscape and Architecture of Tertiary Lymphoid Structures in Urothelial Cancer
Candidate immune biomarkers have been proposed for predicting response to immunotherapy in urothelial cancer (UC). Yet, these biomarkers are imperfect and lack predictive power. A comprehensive overview of the tumor immune contexture, including Tertiary Lymphoid structures (TLS), is needed to better understand the immunotherapy response in UC. We analyzed tumor sections by quantitative multiplex immunofluorescence to characterize immune cell subsets in various tumor compartments in tumors without pretreatment and tumors exposed to preoperative anti-PD1/CTLA-4 checkpoint inhibitors (NABUCCO trial). Pronounced immune cell presence was found in UC invasive margins compared to tumor and stroma regions. CD8+PD1+ T-cells were present in UC, particularly following immunotherapy. The cellular composition of TLS was assessed by multiplex immunofluorescence (CD3, CD8, FoxP3, CD68, CD20, PanCK, DAPI) to explore specific TLS clusters based on varying immune subset densities. Using a k-means clustering algorithm, we found five distinct cellular composition clusters. Tumors unresponsive to anti-PD-1/CTLA-4 immunotherapy showed enrichment of a FoxP3+ T-cell-low TLS cluster after treatment. Additionally, cluster 5 (macrophage low) TLS were significantly higher after pre-operative immunotherapy, compared to untreated tumors. We also compared the immune cell composition and maturation stages between superficial (submucosal) and deeper TLS, revealing that superficial TLS had more pronounced T-helper cells and enrichment of early TLS than TLS located in deeper tissue. Furthermore, superficial TLS displayed a lower fraction of secondary follicle like TLS than deeper TLS. Taken together, our results provide a detailed quantitative overview of the tumor immune landscape in UC, which can provide a basis for further studies
PD-1T TILs as a predictive biomarker for clinical benefit to PD-1 blockade in patients with advanced NSCLC
PURPOSE
Durable clinical benefit to PD-1 blockade in NSCLC is currently limited to a small fraction of patients, underlining the need for predictive biomarkers. We recently identified a tumor-reactive tumor-infiltrating T lymphocyte (TIL) pool, termed PD-1T TILs, with predictive potential in NSCLC. Here, we examined PD-1T TILs as biomarker in NSCLC.
EXPERIMENTAL DESIGN
PD-1T TILs were digitally quantified in120 baseline samples from advanced NSCLC patients treated with PD-1 blockade. Primary outcome was Disease Control (DC) at 6 months. Secondary outcomes were DC at 12 months and survival. Exploratory analyses addressed the impact of lesion-specific responses, tissue sample properties and combination with other biomarkers on the predictive value of PD-1T TILs.
RESULTS
PD-1T TILs as a biomarker reached 77% sensitivity and 67% specificity at 6 months, and 93% and 65% at 12 months, respectively. Particularly, a patient group without clinical benefit was reliably identified, indicated by a high negative predictive value (NPV) (88% at 6 months, 98% at 12 months). High PD-1T TILs related to significantly longer progression-free (HR 0.39, 95% CI: 0.24-0.63, p<0.0001) and overall survival (HR 0.46, 95% CI: 0.28-0.76, p<0.01). Predictive performance was increased when lesion-specific responses and samples obtained immediately before treatment were assessed. Notably, the predictive performance of PD-1TTILs was superior to PD-L1 and TLS in the same cohort.
CONCLUSIONS
This study established PD-1T TILs as predictive biomarker for clinical benefit to PD-1 blockade in advanced NSCLC patients. Most importantly, the high NPV demonstrates an accurate identification of a patient group without benefit
External validation and clinical utility assessment of PREDICT breast cancer prognostic model in young, systemic treatment-naïve women with node-negative breast cancer
Background: The validity of the PREDICT breast cancer prognostic model is unclear for young patients without adjuvant systemic treatment. This study aimed to validate PREDICT and assess its clinical utility in young women with node-negative breast cancer who did not receive systemic treatment. Methods: We selected all women from the Netherlands Cancer Registry who were diagnosed with node-negative breast cancer under age 40 between 1989 and 2000, a period when adjuvant systemic treatment was not standard practice for women with node-negative disease. We evaluated the calibration and discrimination of PREDICT using the observed/expected (O/E) mortality ratio, and the area under the receiver operating characteristic curve (AUC), respectively. Additionally, we compared the potential clinical utility of PREDICT for selectively administering chemotherapy to the chemotherapy-to-all strategy using decision curve analysis at predefined thresholds. Results: A total of 2264 women with a median age at diagnosis of 36 years were included. Of them, 71.2% had estrogen receptor (ER)-positive tumors and 44.0% had grade 3 tumors. Median tumor size was 16 mm. PREDICT v2.2 underestimated 10-year all-cause mortality by 33% in all women (O/E ratio:1.33, 95%CI:1.22–1.43). Model discrimination was moderate overall (AUC10-year:0.65, 95%CI:0.62–0.68), and poor for women with ER-negative tumors (AUC10-year:0.56, 95%CI:0.51–0.62). Compared to the chemotherapy-to-all strategy, PREDICT only showed a slightly higher net benefit in women with ER-positive tumors, but not in women with ER-negative tumors. Conclusions: PREDICT yields unreliable predictions for young women with node-negative breast cancer. Further model updates are needed before PREDICT can be routinely used in this patient subset.</p
Identification of women with an increased risk of developing radiation-induced breast cancer: a case only study
Introduction: Radiation exposure at a young age is one of the strongest risk factors for breast cancer. Germline mutations in genes involved in the DNA-damage repair pathway (DDRP) may render women more susceptible to radiation-induced breast cancer. Methods: We evaluated the contribution of germline mutations in the DDRP genes BRCA1, BRCA2, CHEK2 and ATM to the risk of radiation-induced contralateral breast cancer (CBC). The germline mutation frequency was assessed, in a case-only study, in women who developed a CBC after they had a first breast cancer diagnosed before the age of 50 years, and who were (n = 169) or were not (n = 78) treated with radiotherapy for their first breast tumour. Results: We identified 27 BRCA1, 5 BRCA2, 15 CHEK2 and 4 truncating ATM germline mutation carriers among all CBC patients tested (21%). The mutation frequency was 24.3% among CBC patients with a history of radiotherapy, and 12.8% among patients not irradiated for the first breast tumour (odds ratio 2.18 (95% confidence interval 1.03 to 4.62); p = 0.043). The association between DDRP germline mutation carriers and risk of radiation-induced CBC seemed to be strongest in women who developed their second primary breast tumour at least 5 years after radiotherapy. Th
The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype
Background: CHEK2 has previously been excluded as a major cause of Li-Fraumeni syndrome (LFS). One particular CHEK2 germline mutation, c.1100delC, has been shown to be associated with elevated breast cancer risk. The prevalence of CHEK21100delC differs between populations and has been found to be relatively high in the Netherlands. The question remains nevertheless whether CHEK2 germline mutations contribute to the Li-Fraumeni phenotype.Methods: We have screened 65 Dutch TP53-negative LFS/LFL candidate patients for CHEK2 germline mutations to determine their contribution to the LFS/LFL phenotype.Results: We identified six index patients with a CHEK2 sequence variant, four with the c.1100delC variant and two sequence variants of unknown significance, p.Phe328Ser and c.1096-?_1629+?del.Conclusion: Our data show that CHEK2 is not a major LFS susceptibility gene in the Dutch population. However, CHEK2 might be a factor contributing to individual tumour development in TP53-negative cancer-prone families
- …