9 research outputs found

    Mitochondrial adaptations in insulin resistant muscle

    Get PDF
    Diabetes has reached epidemic proportions worldwide. Type 2 diabetes (T2D) accounts for about 90% of all diabetes cases and is characterized by insulin resistance (IR) in major metabolic tissues. The dramatic rise in T2D is associated with the increased occurrence of obesity and excessive ectopic lipid accumulation, in particular in skeletal muscle, due to excessive caloric intake and decreased physical activity. However, the exact processes leading to IR remain unresolved. One of the leading hypotheses in the research field of type 2 diabetes is that inherited or acquired skeletal muscle mitochondrial dysfunction, associated with a reduced mitochondrial capacity to oxidize fatty acids (FAs), leads to a lipid overload in muscle cells. High levels of lipid intermediates then induce IR by activating a protein kinase, which impairs insulin signaling by phosphorylation of serine/threonine sites on the insulin receptor. Recent studies have challenged this theory and link insulin resistance to an increased capacity to oxidize FAs rather than the reverse. The high ¿-oxidation rates observed in insulin-resistant muscle are associated with low rates of complete FA oxidation and elevated incomplete ¿-oxidation. It has been hypothesized that the accumulation of incompletely metabolized FAs in the mitochondria causes ‘mitochondrial stress’ leading to insulin resistance. To clarify this issue, the timing and nature of muscle mitochondrial adaptations during the development of IR and T2D have been investigated in this thesis using both in vivo and in vitro approaches. The ambiguous results on the role of muscle mitochondrial dysfunction in T2D may be due to the different measurement methods used to determine muscle mitochondrial function. In vitro methodologies, like the determination of gene expression levels, enzyme activities, mitochondrial content, morphology and respiration, provide specific information on different aspects of mitochondrial energy production, but the results cannot be directly translated to in vivo mitochondrial function. 31P magnetic resonance spectroscopy (MRS) provides a non-invasive tool to monitor the energetic status of the cell in vivo by measuring intracellular phosphorous containing metabolites, i.e. phosphocreatine (PCr), ATP and inorganic phosphate (Pi). 31P MRS has been used to assess skeletal muscle mitochondrial function in vivo by measuring (1) resting ATP synthesis flux with saturation transfer (ST) or (2) the rate of PCr recovery after exercise. However, both methods measure completely different parameters, i.e. basal metabolic rate and maximal oxidative capacity, respectively, which might explain the contradictory results that have been obtained. In chapter 2, we compared both parameters in rats treated with the complex I inhibitor diphenyleneiodonium (DPI) with the aim of establishing the most appropriate method for the assessment of in vivo muscle mitochondrial function. In vivo 31P MRS measurements were supplemented by in vitro measurements of oxygen consumption in isolated mitochondria. Two weeks of DPI treatment induced mitochondrial dysfunction, as evidenced by a 20% lower maximal ADP-stimulated oxygen consumption rate in isolated mitochondria from DPI-treated rats oxidizing pyruvate plus malate. This was paralleled by a 46% decrease in in vivo oxidative capacity, determined from post-exercise PCr recovery. Interestingly, no significant difference in resting, ST-based ATP synthesis flux was observed between DPI-treated rats and controls. These results show that the rate constant of PCr recovery measured with dynamic 31P MRS after exercise provides a more sensitive measure of skeletal muscle mitochondrial function than the ATP synthesis flux determined with 31P ST in the resting state. The ATP synthesis flux itself represents the ATP demand of the muscle and in order to interpret the data in terms of mitochondrial function it is necessary to take the error signals, i.e. the concentrations of ADP and Pi, into account. Moreover, the Pi ¿ ATP flux obtained from a 31P ST experiment in the resting state is dominated by glycolytic exchange flux. The second methodological chapter (chapter 3) describes the pH dependence of the PCr recovery time constant (31PCr, i.e. the inverse of the PCr recovery rate constant). It has been shown that muscle tissue acidification at the end of exercise severely prolongs PCr recovery, which is an important complication in the interpretation of post-exercise PCr recovery data. It has been proposed that tPCr can be normalized for the end-exercise pH, in order to use it as a measure for mitochondrial function. However, a general correction for pH can only be applied if there are no intersubject differences in the pH dependence of PCr recovery kinetics. In this chapter the pH dependence of tPCr was investigated in healthy human volunteers on a subject-by-subject basis and it turned out that the effect of acidosis on PCr recovery kinetics after exercise was different between subjects. The pH dependence of tPCr correlated with the proton efflux rate at the start of recovery, indicating that subjects with a smaller pH dependence of tPCr have a higher rate of pH recovery. Therefore, tPCr can only be used as a measure of mitochondrial function when end-exercise pH is close to resting values. Simply correcting tPCr for end-exercise pH is not adequate, in particular when comparing patients and controls, as certain disorders are characterized by altered proton efflux from muscle fibers. In chapters 4-6, 31P MRS was applied to investigate the role of muscle mitochondrial dysfunction in the development of IR and T2D. Chapter 4 describes a cross-sectional human study, in which we examined in vivo skeletal muscle mitochondrial function in healthy, normoglycaemic controls, subjects with early stage T2D and long-standing, insulin-treated T2D patients. It was shown that PCr recovery after exercise was not different between groups, indicating that in vivo oxidative capacity was not impaired in both early and late stages of T2D. These results imply that mitochondrial dysfunction does not necessarily represent either cause or consequence of IR and/or T2D. It was suggested that impairments in oxidative metabolism in type 2 diabetes patients observed in previous studies are likely to be secondary to a less active lifestyle and/or impaired insulin signaling. A cross-sectional study, as presented in chapter 4, only provides correlative data and does not provide detailed information about the time course of events during the development of T2D. Therefore, the aim of the next study, described in chapter 5, was to gain more insight into the timing and nature of mitochondrial adaptations during the development of high-fat diet-induced insulin resistance in rats. Adult Wistar rats were fed a high-fat diet or normal chow for 2.5 and 25 weeks. Muscle oxidative capacity was assessed in vivo from 31P MRS measurements of PCr recovery and in vitro by measuring mitochondrial DNA copy number and oxygen consumption in isolated mitochondria. Muscle lipid status was determined by 1H MRS (intramyocellular lipids, IMCL) and tandem mass spectrometry (acylcarnitines). The short-term high-fat diet induced increases in IMCL content and muscle medium- and long-chain acylcarnitines, together with an increased in vivo oxidative capacity. The latter result could be fully accounted for by increased mitochondrial content. The long-term high-fat diet resulted in even higher IMCL and acylcarnitine levels, a further increase in the number of muscle mitochondria and an increased capacity to oxidize fat-derived substrates in vitro. Surprisingly, this did not result in a higher muscle oxidative capacity in vivo. These findings show that skeletal muscle in high-fat diet-induced IR requires a progressively larger mitochondrial pool size to maintain normal oxidative capacity in vivo. Comparable to the results of the 25 wk high-fat diet are the results observed in Wistar rats on a similar high-fat diet for 15 wk, as presented in chapter 6. The observed dissociation between in vivo and in vitro determinations of muscle mitochondrial function after long-term high-fat diet feeding in both chapter 5 and 6 suggests that in vivo mitochondrial function in insulin-resistant rat muscle is compromised by factors not taken into account in vitro. In both studies, muscle tissue free carnitine was significantly decreased, whereas muscle medium- and long-chain acylcarnitines were significantly increased. This finding indicates that in vivo muscle mitochondrial function might have been compromised by high concentrations of lipid metabolites in vivo. This was corroborated by the finding that mitochondria from high-fat diet fed rats were more susceptible to FA-induced mitochondrial uncoupling, which can explain the observed in vivo mitochondrial dysfunction. Next, it was investigated whether the observed carnitine insufficiency, a common feature of insulin-resistant states, contributes to the accumulation of muscle lipid intermediates and the lipid-induced impairment of skeletal muscle mitochondrial function in vivo. Carnitine supplementation might reduce toxic lipid intermediates by increasing FA oxidation and export of lipid metabolites out of the mitochondria and into the plasma, thereby relieving mitochondrial stress. Despite the normalization of muscle free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function or insulin resistance. These results indicate that the decrease in muscle free carnitine as a result of high-fat diet feeding did not contribute to the observed impairment in in vivo muscle mitochondrial function. Conclusions Although it has been hypothesized that skeletal muscle mitochondrial dysfunction and an associated decreased capacity to oxidize FAs is the primary cause for muscle lipid accumulation and IR, the findings in this thesis are in agreement with recent studies which have shown that high-fat diets lead to increased rather than decreased FA oxidation, resulting in the accumulation of lipid intermediates causing mitochondrial dysfunction. Furthermore, from the results presented in this thesis it is concluded that it is essential to use a combination of several techniques, preferably both in vivo and in vitro, for a thorough investigation of muscle mitochondrial function. Compelling evidence for this is provided in chapters 5 and 6, where it was shown that a normal in vivo oxidative capacity, as measured by PCr recovery, can mask an impairment in intrinsic mitochondrial function when it is accompanied by increased mitochondrial content

    Integrated care for frail elderly: A qualitative study of a promising approach in the netherlands

    Get PDF
    Introduction: Increasingly, frail elderly need to live at home for longer, relying on support from informal caregivers and community-based health-and social care professionals. To align care and avoid fragmentation, integrated care programmes are a

    Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function

    Get PDF
    31P magnetic resonance spectroscopy (MRS) has been used to assess skeletal muscle mitochondrial function in vivo by measuring 1) phosphocreatine (PCr) recovery after exercise or 2) resting ATP synthesis flux with saturation transfer (ST). In this study, we compared both parameters in a rat model of mitochondrial dysfunction with the aim of establishing the most appropriate method for the assessment of in vivo muscle mitochondrial function. Mitochondrial dysfunction was induced in adult Wistar rats by daily subcutaneous injections with the complex I inhibitor diphenyleneiodonium (DPI) for 2 wk. In vivo 31P MRS measurements were supplemented by in vitro measurements of oxygen consumption in isolated mitochondria. Two weeks of DPI treatment induced mitochondrial dysfunction, as evidenced by a 20% lower maximal ADP-stimulated oxygen consumption rate in isolated mitochondria from DPI-treated rats oxidizing pyruvate plus malate. This was paralleled by a 46% decrease in in vivo oxidative capacity, determined from postexercise PCr recovery. Interestingly, no significant difference in resting, ST-based ATP synthesis flux was observed between DPI-treated rats and controls. These results show that PCr recovery after exercise has a more direct relationship with skeletal muscle mitochondrial function than the ATP synthesis flux measured with 31P ST MRS in the resting state

    Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates

    No full text
    31P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tPCr) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tPCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tPCr. We investigated the pH dependence of tPCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tPCr differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tPCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tPCr have a higher proton efflux rate. Our study implies that simply correcting tPCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. Copyright © 2007 the American Physiological Society

    Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction

    No full text
    Objective: Several lines of evidence support a potential role of skeletal muscle mitochondrial dysfunction in the pathogenesis of insulin resistance and/or type 2 diabetes. However, it remains to be established whether mitochondrial dysfunction represents either cause or consequence of the disease. We examined in vivo skeletal muscle mitochondrial function in early and advanced stages of type 2 diabetes, with the aim to gain insight in the proposed role of mitochondrial dysfunction in the aetiology of insulin resistance and/or type 2 diabetes. Methods: Ten long-standing, insulin-treated type 2 diabetes patients, 11 subjects with impaired fasting glucose, impaired glucose tolerance and/ or recently diagnosed type 2 diabetes, and 12 healthy, normoglycaemic controls, matched for age and body composition and with low habitual physical activity levels were studied. In vivo mitochondrial function of the vastus lateralis muscle was evaluated from post-exercise phosphocreatine (PCr) recovery kinetics using 31P magnetic resonance spectroscopy (MRS). Intramyocellular lipid (IMCL) content was assessed in the same muscle using single-voxel 1H MRS. Results: IMCL content tended to be higher in the type 2 diabetes patients when compared with normoglycaemic controls (P=0.06). The 31P MRS parameters for mitochondrial function, i.e. PCr and ADP recovery time constants and maximum aerobic capacity, did not differ between groups. Conclusions: The finding that in vivo skeletal muscle oxidative capacity does not differ between long-standing, insulin-treated type 2 diabetes patients, subjects with early stage type 2 diabetes and sedentary, normoglycaemic controls suggests that mitochondrial dysfunction does not necessarily represent either cause or consequence of insulin resistance and/or type 2 diabetes. © 2008 Society of the European Journal of Endocrinology

    Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates

    No full text
    31P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tPCr) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tPCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tPCr. We investigated the pH dependence of tPCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tPCr differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tPCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tPCr have a higher proton efflux rate. Our study implies that simply correcting tPCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. Copyright © 2007 the American Physiological Society

    Magnitude and control of mitochondrial sensitivity to ADP

    No full text
    The transduction function for ADP stimulation of mitochondrial ATP synthesis in skeletal muscle was reconstructed in vivo and in silico to investigate the magnitude and origin of mitochondrial sensitivity to cytoplasmic ADP concentration changes. Dynamic in vivo measurements of human leg muscle phosphocreatine (PCr) content during metabolic recovery from contractions were performed by 31P-NMR spectroscopy. The cytoplasmic ADP concentration ([ADP]) and rate of oxidative ATP synthesis (Jp) at each time point were calculated from creatine kinase equilibrium and the derivative of a monoexponential fit to the PCr recovery data, respectively. Reconstructed [ADP]-Jp relations for individual muscles containing more than 100 data points were kinetically characterized by nonlinear curve fitting yielding an apparent kinetic order and ADP affinity of 1.9 ± 0.2 and 0.022 ± 0.003 mM, respectively (means ± SD; n = 6). Next, in silico [ADP]-Jp relations for skeletal muscle were generated using a computational model of muscle oxidative ATP metabolism whereby model parameters corresponding to mitochondrial enzymes were randomly changed by 50-150% to determine control of mitochondrial ADP sensitivity. The multiparametric sensitivity analysis showed that mitochondrial ADP ultrasensitivity is an emergent property of the integrated mitochondrial enzyme network controlled primarily by kinetic properties of the adenine nucleotide translocator. Copyright © 2009 the American Physiological Society

    Exercise training improves glycemic control in long-standing insulin-treated type 2 diabetic patients

    No full text
    Regular exercise represents an effective strategy to prevent and/or treat type 2 diabetes ( 1 , 2 ). However, the clinical benefits of exercise intervention in a vastly expanding group of long-standing insulin-treated type 2 diabetic patients with comorbidities are less evident. As these patients generally experience muscle weakness ( 3 – 6 ), cardiovascular comorbidities ( 7 – 10 ), and/or exercise intolerance ( 3 , 11 – 13 ), it has proven difficult or even impossible for them to adhere to an intense endurance exercise training regimen ( 14 , 15 ). In the present study, we investigated the feasibility and benefits of a low-impact exercise intervention program, combining both endurance and resistance-type exercise, in long-standing insulin-treated type 2 diabetic patients with a high cardiovascular risk profile. We assessed the impact of 5 months of exercise training on glycemic control, body composition, workload capacity, and whole-body as well as skeletal muscle oxidative capacity

    Increased mitochondrial content rescues in vivo muscle oxidative capacity in long-term high-fat-diet-fed rats

    No full text
    Mitochondria are thought to play a crucial role in the etiology of muscle insulin resistance (IR). The aim of this study was to gain more insight into the timing and nature of mitochondrial adaptations during the development of high-fat-diet (HFD)-induced IR. Adult Wistar rats were fed HFD or normal chow for 2.5 and 25 wk. Intramyocellular lipids (IMCLs) were quantified in vivo using 1H magnetic resonance spectroscopy (MRS). Muscle oxidative capacity was assessed in vivo using 31P MRS and in vitro by measuring mitochondrial DNA copy number and oxygen consumption in isolated mitochondria. MRS in tibialis anterior muscle revealed 3.3-fold higher IMCL content and 1.2-fold increased oxidative capacity after 2.5 wk of HFD feeding. The latter result could be fully accounted for by increased mitochondrial content. After 25 wk of HFD, maximal ADP-stimulated oxygen consumption in isolated mitochondria oxidizing pyruvate plus malate remained unaffected, while IMCL and mitochondrial content had further increased compared to controls (5.1-fold and 1.4-fold, respectively). Interestingly, in vivo oxidative capacity at this time point was identical to controls. These results show that skeletal muscle in HFD-induced IR accompanied by IMCL accumulation requires a progressively larger mitochondrial pool size to maintain normal oxidative capacity in vivo.—Van den Broek, N. M. A., Ciapaite, J., De Feyter, H. M. M. L., Houten, S. M., Wanders, R. J. A., Jeneson, J. A. L., Nicolay, K., Prompers, J. J. Increased mitochondrial content rescues in vivo muscle oxidative capacity in long-term high-fat-diet-fed rats
    corecore