726 research outputs found

    Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries

    Get PDF
    Inspiral signals from binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave interferometers (LIGO, Virgo, GEO-600 and TAMA-300). We present parameter-estimation simulations for inspirals of black-hole--neutron-star binaries using Markov-chain Monte-Carlo methods. For the first time, we have both estimated the parameters of a binary inspiral source with a spinning component and determined the accuracy of the parameter estimation, for simulated observations with ground-based gravitational-wave detectors. We demonstrate that we can obtain the distance, sky position, and binary orientation at a higher accuracy than previously suggested in the literature. For an observation of an inspiral with sufficient spin and two or three detectors we find an accuracy in the determination of the sky position of typically a few tens of square degrees.Comment: v2: major conceptual changes, 4 pages, 1 figure, 1 table, submitted to ApJ

    The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte-Carlo analysis of gravitational-wave signals

    Full text link
    Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave (GW) interferometers (LIGO, Virgo, and GEO-600). We present parameter-estimation results from our Markov-chain Monte-Carlo code SPINspiral on signals from binaries with precessing spins. Two data sets are created by injecting simulated GW signals into either synthetic Gaussian noise or into LIGO detector data. We compute the 15-dimensional probability-density functions (PDFs) for both data sets, as well as for a data set containing LIGO data with a known, loud artefact ("glitch"). We show that the analysis of the signal in detector noise yields accuracies similar to those obtained using simulated Gaussian noise. We also find that while the Markov chains from the glitch do not converge, the PDFs would look consistent with a GW signal present in the data. While our parameter-estimation results are encouraging, further investigations into how to differentiate an actual GW signal from noise are necessary.Comment: 11 pages, 2 figures, NRDA09 proceeding

    Characterization of chaos in random maps

    Full text link
    We discuss the characterization of chaotic behaviours in random maps both in terms of the Lyapunov exponent and of the spectral properties of the Perron-Frobenius operator. In particular, we study a logistic map where the control parameter is extracted at random at each time step by considering finite dimensional approximation of the Perron-Frobenius operatorComment: Plane TeX file, 15 pages, and 5 figures available under request to [email protected]

    System size resonance in coupled noisy systems and in the Ising model

    Get PDF
    We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensembles -- lattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.Comment: 4 page

    Finite time and asymptotic behaviour of the maximal excursion of a random walk

    Full text link
    We evaluate the limit distribution of the maximal excursion of a random walk in any dimension for homogeneous environments and for self-similar supports under the assumption of spherical symmetry. This distribution is obtained in closed form and is an approximation of the exact distribution comparable to that obtained by real space renormalization methods. Then we focus on the early time behaviour of this quantity. The instantaneous diffusion exponent νn\nu_n exhibits a systematic overshooting of the long time exponent. Exact results are obtained in one dimension up to third order in n−1/2n^{-1/2}. In two dimensions, on a regular lattice and on the Sierpi\'nski gasket we find numerically that the analytic scaling νn≃ν+An−ν\nu_n \simeq \nu+A n^{-\nu} holds.Comment: 9 pages, 4 figures, accepted J. Phys.

    Phase-Induced (In)-Stability in Coupled Parametric Oscillators

    Full text link
    We report results on a model of two coupled oscillators that undergo periodic parametric modulations with a phase difference θ\theta. Being to a large extent analytically solvable, the model reveals a rich θ\theta dependence of the regions of parametric resonance. In particular, the intuitive notion that anti-phase modulations are less prone to parametric resonance is confirmed for sufficiently large coupling and damping. We also compare our results to a recently reported mean field model of collective parametric instability, showing that the two-oscillator model can capture much of the qualitative behavior of the infinite system.Comment: 19 pages, 8 figures; a version with better quality figures can be found in http://hypatia.ucsd.edu/~mauro/English/publications.htm

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4 μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    A Universal Approach to Eliminate Antigenic Properties of Alpha-Gliadin Peptides in Celiac Disease

    Get PDF
    Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins. We have analyzed over 3,000 expressed α-gliadin sequences from 11 bread wheat cultivars to determine whether they encode for peptides potentially involved in celiac disease. All identified epitope variants were synthesized as peptides and tested for binding to the disease-associated HLA-DQ2 and HLA-DQ8 molecules and for recognition by patient-derived α-gliadin specific T cell clones. Several specific naturally occurring amino acid substitutions were identified for each of the α-gliadin derived peptides involved in celiac disease that eliminate the antigenic properties of the epitope variants. Finally, we provide proof of principle at the peptide level that through the systematic introduction of such naturally occurring variations α-gliadins genes can be generated that no longer encode antigenic peptides. This forms a crucial step in the development of strategies to modify gluten genes in wheat so that it becomes safe for celiac disease patients. It also provides the information to design and introduce safe gluten genes in other cereals, which would exhibit improved quality while remaining safe for consumption by celiac disease patients
    • …
    corecore