236 research outputs found

    Subthreshold photoproduction of charm

    Get PDF
    Charm photoproduction rates off nuclei below the nucleon threshold are estimated using the phenomenologically known structure functions both for x>1 and x<1. The rates rapidly fall below the threshold from values of the order 10 pb for Pb close to the threshold (at 7.5 GeV) down to values of the order 1 pb at 6 GeV.Comment: 11 p[ages, 7 figure

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Zeroing in on more photons and gluons

    Full text link
    We discuss radiation zeros that are found in gauge tree amplitudes for processes involving multi-photon emission. Previous results are clarified by examples and by further elaboration. The conditions under which such amplitude zeros occur are identical in form to those for the single-photon zeros, and all radiated photons must travel parallel to each other. Any other neutral particle likewise must be massless (e.g. gluon) and travel in that common direction. The relevance to questions like gluon jet identification and computational checks is considered. We use examples to show how certain multi-photon amplitudes evade the zeros, and to demonstrate the connection to a more general result, the decoupling of an external electromagnetic plane wave in the ``null zone". Brief comments are made about zeros associated with other gauge-boson emission.Comment: 26 page

    On the Behavior of the Effective QCD Coupling alpha_tau(s) at Low Scales

    Full text link
    The hadronic decays of the tau lepton can be used to determine the effective charge alpha_tau(m^2_tau') for a hypothetical tau-lepton with mass in the range 0 < m_tau' < m_tau. This definition provides a fundamental definition of the QCD coupling at low mass scales. We study the behavior of alpha_tau at low mass scales directly from first principles and without any renormalization-scheme dependence by looking at the experimental data from the OPAL Collaboration. The results are consistent with the freezing of the physical coupling at mass scales s = m^2_tau' of order 1 GeV^2 with a magnitude alpha_tau ~ 0.9 +/- 0.1.Comment: 15 pages, 4 figures, submitted to Physical Review D, added references, some text added, no results nor figures change

    The intrinsic charm contribution to the proton spin

    Full text link
    The charm quark contribution to the first moment of g1(x,Q2)g_1(x,Q^2) is calculated using a heavy mass expansion of the divergence of the singlet axial current. It is shown to be small.Comment: LATEX, 6 page

    Three Flavour QCD from the Holographic Principle

    Full text link
    Building on recent research into five-dimensional holographic models of QCD, we extend this work by including the strange quark with an SU(3)_L\times SU(3)_R gauge symmetry in the five-dimensional theory. In addition we deform the naive AdSAdS metric with a single parameter, thereby breaking the conformal symmetry at low energies. The vector and axial vector sectors are studied in detail and both the masses and decay constants are calculated with the additional parameters. It is shown that with a single extra degree of freedom, exceptional agreement with experimental results can be obtained in the light quark sector while the kaon sector is found to give around 10% agreement with lattice results. We propose some simple extensions to this work to be taken up in future research.Comment: 9 pages, 1 figure, references adde

    Resummation of the hadronic tau decay width with the modified Borel transform method

    Get PDF
    A modified Borel transform of the Adler function is used to resum the hadronic tau decay width ratio. In contrast to the ordinary Borel transform, the integrand of the Borel integral is renormalization--scale invariant. We use an ansatz which explicitly accounts for the structure of the leading infrared renormalon. Further, we use judiciously chosen conformal transformations for the Borel variable, in order to map sufficiently away from the origin the other ultraviolet and infrared renormalon singularities. In addition, we apply Pade approximants for the corresponding truncated perturbation series of the modified Borel transform, in order to further accelerate the convergence. Comparing the results with the presently available experimental data on the tau hadronic decay width ratio, we obtain αs(Mz)=0.1192+0.0007exp.+0.0010EW+CKM+0.0009th.+0.0003evol.\alpha_s(M^z) = 0.1192 +- 0.0007_{exp.} +- 0.0010_{EW+CKM} +- 0.0009_{th.} +- 0.0003_{evol.}. These predictions virtually agree with those of our previous resummations where we used ordinary Borel transforms instead.Comment: 32 pages, 2 eps-figures, revtex; minor changes in the formulations; a typo in Eq.(47) corrected; version as appearing in Phys. Rev.

    Pion and sigma meson properties in a relativistic quark model

    Full text link
    A variety of strong and electroweak interaction properties of the pion and the light scalar sigma meson are computed in a relativistic quark model. Under the assumption that the resulting coupling of these mesons to the constituent quarks is identical, the sigma meson mass is determined as M_sigma=385.4 MeV. We discuss in detail the gauging of the non-local meson-quark interaction and calculate the electromagnetic form factor of the pion and the form factors of the pi(0) -> gamma gamma and sigma -> gamma gamma processes. We obtain explicit expressions for the relevant form factors and evaluate the leading and next-to-leading orders for large Euclidean photon virtualities. Turning to the decay properties of the sigma we determine the width of the electromagnetic sigma -> gamma gamma transition and discuss the strong decay sigma -> pi pi. In a final step we compute the nonleptonic decays D -> sigma pi and B -> sigma pi relevant for the possible observation of the sigma meson. All our results are compared to available experimental data and to results of other theoretical studies.Comment: 46 page

    Analysis of the vector form factors fKπ+(Q2)f^+_{K\pi}(Q^2) and fKπ(Q2)f^-_{K\pi}(Q^2) with light-cone QCD sum rules

    Get PDF
    In this article, we calculate the vector form factors fKπ+(Q2)f^+_{K\pi}(Q^2) and fKπ(Q2)f^-_{K\pi}(Q^2) within the framework of the light-cone QCD sum rules approach. The numerical values of the fKπ+(Q2)f^+_{K\pi}(Q^2) are compatible with the existing theoretical calculations, the central value of the fKπ+(0)f^+_{K\pi}(0), fKπ+(0)=0.97f^+_{K\pi}(0)=0.97, is in excellent agreement with the values from the chiral perturbation theory and lattice QCD. The values of the fKπ(0)|f^-_{K\pi}(0)| are very large comparing with the theoretical calculations and experimental data, and can not give any reliable predictions. At large momentum transfers with Q2>5GeV2Q^2> 5GeV^2, the form factors fKπ+(Q2)f^+_{K\pi}(Q^2) and fKπ(Q2)|f^-_{K\pi}(Q^2)| can either take up the asymptotic behavior of 1Q2\frac{1}{Q^2} or decrease more quickly than 1Q2\frac{1}{Q^2}, more experimental data are needed to select the ideal sum rules.Comment: 22 pages, 16 figures, revised version, to appear in Eur. Phys. J.
    corecore