174 research outputs found

    The structure of one-relator relative presentations and their centres

    Full text link
    Suppose that G is a nontrivial torsion-free group and w is a word in the alphabet G\cup\{x_1^{\pm1},...,x_n^{\pm1}\} such that the word w' obtained from w by erasing all letters belonging to G is not a proper power in the free group F(x_1,...,x_n). We show how to reduce the study of the relative presentation \^G= to the case n=1. It turns out that an "n-variable" group \^G can be constructed from similar "one-variable" groups using an explicit construction similar to wreath product. As an illustration, we prove that, for n>1, the centre of \^G is always trivial. For n=1, the centre of \^G is also almost always trivial; there are several exceptions, and all of them are known.Comment: 15 pages. A Russian version of this paper is at http://mech.math.msu.su/department/algebra/staff/klyachko/papers.htm . V4: the intoduction is rewritten; Section 1 is extended; a short introduction to Secton 5 is added; some misprints are corrected and some cosmetic improvements are mad

    Free subgroups of one-relator relative presentations

    Full text link
    Suppose that G is a nontrivial torsion-free group and w is a word over the alphabet G\cup\{x_1^{\pm1},...,x_n^{\pm1}\}. It is proved that for n\ge2 the group \~G= always contains a nonabelian free subgroup. For n=1 the question about the existence of nonabelian free subgroups in \~G is answered completely in the unimodular case (i.e., when the exponent sum of x_1 in w is one). Some generalisations of these results are discussed.Comment: V3: A small correction in the last phrase of the proof of Theorem 1. 4 page

    Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses

    Get PDF
    We report the observation of two-dimensional plasma filamentary arrays with more than 100 elements generated during breakdown of air at atmospheric pressure by a focused Gaussian beam from a 1.5-MW, 110-GHz gyrotron operating in 3-mu s pulses. Each element is a plasma filament elongated in the electric field direction and regularly spaced about one-quarter wavelength apart in the plane perpendicular to the electric field. The development of the array is explained as a result of diffraction of the beam around the filaments, leading to the sequential generation of high intensity spots, at which new filaments are created, about a quarter wavelength upstream from each existing filament. Electromagnetic wave simulations corroborate this explanation and show very good correlation to the observed pattern of filaments.open424

    A universal model for a family of doubly commuting operators

    No full text
    corecore