91 research outputs found

    Co - designing marine science beyond good intentions: support stakeholders’ empowerment in transformative pathways

    Get PDF
    Calls for science to innovate by including stakeholders' in the creation of marine knowledge have been rising, to create impact beyond laboratories and to contribute to the empowerment of local communities when interacting with marine and coastal ecosystems. As a transdisciplinary group of scientists working on co-designing research projects, this paper draws upon our experiences to further define the concept and seek to improve the process of co-design. We highlight the key barriers for co-design processes to contribute to increasing stakeholders' capacity to produce intended effects on marine policy. We suggest that stakeholder engagement requires overcoming the resistance to non-scientific knowledge sources and considering power asymmetries in the governance and management of the ocean. We argue that power and politics must be placed at the very heart of the production of a co-designed marine science and must be an aspect of the facilitation itself. In this paper, we aim to provide insights to navigate throughout the journey of stakeholder engagement, with the critical perspective necessary to make this process socially and environmentally effective

    Why Did Memetics Fail? Comparative Case Study

    Get PDF
    Although the theory of memetics appeared highly promising at the beginning, it is no longer considered a scientific theory among contemporary evolutionary scholars. This study aims to compare the genealogy of memetics with the historically more successful gene-culture coevolution theory. This comparison is made in order to determine the constraints that emerged during the internal development of the memetics theory that could bias memeticists to work on the ontology of meme units as opposed to hypotheses testing, which was adopted by the gene-culture scholars. I trace this problem back to the diachronic development of memetics to its origin in the gene-centered anti-group-selectionist argument of George C. Williams and Richard Dawkins. The strict adoption of this argument predisposed memeticists with the a priori idea that there is no evolution without discrete units of selection, which in turn, made them dependent on the principal separation of biological and memetic fitness. This separation thus prevented memeticists from accepting an adaptationist view of culture which, on the contrary, allowed gene-culture theorists to attract more scientists to test the hypotheses, creating the historical success of the gene-culture coevolution theory

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Technology and the Era of the Mass Army

    Full text link

    Afri-Can Forum 2

    Full text link
    • …
    corecore